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Abstract

We consider the simultaneous reconstruction of a nonstation-
ary concentration distribution and the underlying nonstationary
flow field. As the observation modality, we employ electrical
impedance tomography. Earlier studies have shown that such an
estimation scheme is in principle possible since the evolution of
an inhomogeneous concentration carries information also on the
velocity field. These results have, however, been restricted to
either stationary velocity fields or simplified non-physical mod-
els. In the general case, the estimation of the velocity field up
to the fine details of the flow with diffuse tomography is im-
possible. In this paper we show, however, that it is possible to
estimate a reduced order representation of a physical fluid dy-
namics model, here the Navier-Stokes model, simultaneously
with the concentration. This is accomplished by considering a
proper orthogonal decomposition representation for the velocity
field, and careful modelling of the uncertainties of the models,
in particular, the subspace of the velocity field that is not esti-
mated.

Introduction

Inverse problems are characterized as problems that tolerate
measurement and modelling errors poorly, and are thus un-
stable. With inverse problems in which there are significant
measurement errors and/or model uncertainties, the Bayesian
framework for inverse problems is often adopted. In this frame-
work, the modelling of the measurement process and the ex-
plicit modelling of the primary (interesting) uncertainties as
well as the secondary unknowns and uncertainties, are carried
out separately [7]. Nonstationary inverse problems are a spe-
cial class of Bayesian inverse problems in which the primary
unknown can be modelled with a stochastic evolution model,
typically a stochastic PDE. These problems can be tackled with
sequential Bayesian estimation methods and, in special cases,
recursive algorithms such as the Kalman filter and its variants.

Problems that are governed by stochastic convection-diffusion
(CD) models in fluids have served as standard examples for
sources of nonstationary inverse problems [15, 14, 16]. In these
problems, the stochasticity of the models is typically due to un-
known boundary data for the CD model or the fluid dynamics
model, unknown velocity field, and highly approximate reduced
order models for the primary unknowns.

Partial solutions to the stochastic CD problems with electrical
impedance tomography, and treating the velocity field as a nui-
sance parameter, have been studied earlier. The state estimation
problem governed by a convection-diffusion model under un-
certainties in boundary data has been discussed in a series of
papers starting with [15]. In [16], the state estimation scheme
was verified in a 3D pipeline flow and the problem has been also
verified with real data.

The problem of simultaneously estimating partial information
on the flow was considered in [17]. In [17], the projection of
the velocity field onto a low-dimensional subspace of 1-3 di-
mensions was considered. Such low-dimensional approxima-
tions are in this context often referred to as reduced order mod-

els [2]. It was found that such a reduced order model could be
identified simultaneously with the concentration. The reduced
order subspaces were, however, ad hoc choices, and a nonphys-
ical random walk model was used as the model for the evolution
of the projection coefficients.

In this paper, we consider the problem of simultaneous estima-
tion of the concentration and a reduced order approximation for
the unknown nonstationary velocity field. In particular, we con-
sider Navier-Stokes flows. Moreover, all unavoidable uncertain-
ties, errors that are due using coarse finite element approxima-
tions, as well as the non-estimated part of the velocity field, are
treated using the nonstationary approximation error approach.

Electrical Impedance Tomography

For physically realizable quasi-stationary EIT measurements,
the complete electrode model (CEM) [1] is the best available
measurement model. The CEM is of the form:
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where σ = σ(�r) is the conductivity distribution, u = u(�r) is am-
plitude of the electrical potential in target domain Ω, and L is
the number of the electrodes. U(�), I(�), and z(�), respectively,
are the electric potential, current and contact impedance corre-
sponding to the �th electrode e(�). Further, ΓΩ,e = ∪L

�=1e(�) is
the union of boundary patches covered by the electrodes.

The relationship between the noiseless measurements U , the
conductivity σ and the current pattern I can be written as
U = R̄(σ)I. In this paper, we consider the additive measure-
ment noise model

V = R̄(σ)I +e (5)

For numerical solution, for example, the finite element method
would be applied to the variational form of CEM.

In the case of time-depending conductivity, we tag all variables
with time

Vt = R̄(σt)It +et (6)

where the subscript t is a discrete time index referring to the
time instant of the measurement. The measurements are ob-
tained at discrete times. We denote Rt(σ) = R̄(σ)It .

The evolution model will be formulated in terms of concentra-
tion c(�r,t) of an electrically conducting substance. The obser-
vation model in terms of concentration is the related composite
map

Vt = (Rt ◦σ)(ct)+et = R∗
t (ct)+et (7)



Nonstationary Inverse Problems and Approximation Errors

Nonstationary inversion refers to problems in which the un-
known is a time-varying quantity and the measurements are ob-
tained sequentially. With a nonstationary inverse problem, the
measurements that are obtained at a time, often do not allow for
reasonable reconstructions of the unknown target. If a feasible
stochastic evolution model for the target, however, can be con-
structed, the reconstruction problem can be recast as a statistical
state estimation problem. For a general description of the state
estimation formulation of nonstationary inverse problems, see
[7].

Most of the nonstationary inverse problems are related to trans-
port phenomena, such as fluid flows in process industry (pro-
cess tomography) [15, 5]. Process tomography refers to a va-
riety of imaging techniques used in process industry. Process
tomography has been applied to such end uses as process mon-
itoring, control, and design. In particular, process tomography
has applied to imaging of mixers [3, 12], separators [6], chem-
ical reactors [18], and industrial pipelines and vessels [13, 19].
Several imaging modalities have been used in process tomog-
raphy, with the most common modalities having been related
to electromagnetic probing, that is capacitance tomography and
impedance tomography [20].

Let Xt be the unknown state variable and t ∈ N. Let the se-
quence of measurements be Yt . In sequential Bayesian esti-
mation, the task is to model the posterior distribution π(Xt |D)
where D = {Y�, � ∈ I}, and where I is a set of time indices.
Most commonly, one is to consider the filtering problem in
which I = {1, . . . ,t} and we denote Dt = {Y�, � = 1, . . . ,t}.

Let the discrete-time (state) evolution model and the observa-
tion model be

Xt+1 = Ft(Xt ,Wt) (8)

Yt = Gt(Xt ,Et) (9)

respectively. In (8-9), Ft and Gt are deterministic models, and
Wt and Et are the state noise and observation noise processes,
respectively. For (8-9) to be a feasible description for the prob-
lem, the state and observation noise processes have to be mod-
elled so that they represent all uncertainties in these models.

Typical uncertainties that are related to the evolution and/or the
observation model, include unknown boundary data [9, 15], un-
interesting distributed parameters [8], and the geometry of the
domain [11]. Naturally, the formulation of such problems could
be done so that (parametrizations) of these uncertainties are
taken as unknowns to be estimated simultaneously with the pri-
mary interesting unknowns. This approach will, however, often
lead to a computationally significantly more complex problem.

For the computationally efficient modelling of auxiliary un-
knowns, as well as discretization and other model reduction re-
lated errors, the approximation error approach was proposed in
[7] in which, for example, EIT and deconvolution type problems
were considered. The approximation error approach has also
been successfully applied to optical tomography and model re-
duction (discretization), anisotropy, handling unknown bound-
ary data, and has also been verified with real EIT data under
model reduction, geometry related uncertainties and unknown
contact impedances. The extension of the approximation error
approach to nonstationary problems has also been developed in
which the model reduction, long time stepping and other com-
putational problems were under particular consideration. The
computational scheme in this paper conforms to these papers.
For references of approximation error approach, see for exam-
ple [10].

Reduced Order Navier-Stokes Model

For reduced order Navier-Stokes, see for example [2]. Let us
write

�v(�r,t) ≈ �v0(�r)+
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In reduced order NS, the velocity field is considered as a
stochastic flow and the basis {�vi} is chosen so that E�r,t‖�v −
(�v0 +�vp)‖2 is minimized over all p + 1-dimensional bases,
where the notation E�r,t‖�v − (�v0 +�vp)‖2 refers to the ergodic
mean (we have Ω ⊂ R
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Thus, the POD basis is such that the projection error (as squared
norm of the velocity field) is minimized (uniformly) over Ω and
over time interval t ∈ (0,T ).

Stochastic Convection-Diffusion Model

The stochastic convection-diffusion equation has earlier been
considered in the construction of the evolution model in [15]
and we refer for the details to this paper.

The convection-diffusion (CD) equation is of the form

∂c
∂t

= ∇ ·κ∇c−�v ·∇c (12)

where κ = κ(�r) is the diffusion coefficient. In this paper, we
consider flows in pipelines and set the following boundary con-
ditions

c = cin, �r ∈ ΓΩ,in (13)
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)
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where cin = cin(�r,t) is an unknown function, ΓΩ,in is the input
boundary where the flow enters the domain Ω. On the output
boundary, the homogeneous Neumann condition is also approx-
imately valid, see [15].

The primary task is usually to estimate the time-varying con-
centration distribution c(�r,t) inside Ω. Note that if the velocity
field�v and the Dirichlet data on the input boundary were known,
we would not need any (EIT or other) measurements to infer the
state of the system, that is, the concentration.

Carrying out semidiscrete FEM formulation for the CD model
and retaining the explicit dependence on the input bound-
ary condition, and then employing the implicit Runge-Kutta
scheme, we arrive at

ct+1 = ct +Δt
s

∑
i=1

ψiϑi (15)

ϑi = F

(
ct +Δt

s

∑
j=1

αi jϑ j, cin,t ,cin,t−1

)
(16)

where αi j and ψi are known constants depending on the inte-
gration method we are to use, and s is the number of stages
in time integration, and ϑk = ϑk(ct ,βp,cin,t ,cin,t−1). In par-
ticular, we choose the 3-stage, 4th order singly diagonally im-
plicit (SSP-SDIRK34) variant which allows the use of reason-
ably large time steps without stability problems.



Simultaneous Estimation of Time-varying Conductivity and
Nonstationary Flow

The state variable is now Xt = (βp
t ,ct) and we define the de-

terministic mapping F : Xt 	→ Xt+1 that is induced by (11) and
(15-16). Note that the deterministic evolution model for con-
centration depends also on the unknown concentration on the
input boundary, that is, (cin,t ,cin,t−1), which are neither known
or listed as variables to be estimated. In the nonstationary ap-
proximation error approach, the input boundary data are mod-
elled as one of the stochastic processes. Thus, we write the
stochastic evolution model in the form

Xt+1 = F (Xt)+Wt +Qt (17)

where the process Wt is induced by the model for the evolution
of the input boundary through (15-16), see [15], and Qt is a
process related to other errors and uncertainties, such as pure
numerical approximation errors. Note also that the model F
does not depend on time explicitly, F (Xt) depends on time only
through the time evolution of Xt .

With an additive model for the observation errors Et in (9), the
non-linear observation model is of the form

Yt = Vt = Gt(Xt)+Et +Vt (18)

where Gt(Xt) = R∗
t (ct), Et represents the (pure) measurement

errors, and Vt is due to the numerical approximation of the
forward model R∗(ct ; It) as well as the contribution of the
noise processes in (17). The equations (17-18) define the state
space representation of the problem, in which the variables
Xt = (βp

t ,ct) are treated as the state variables to be estimated,
and the approximation errors are modelled.

The adoption of a Kalman filter or its approximative nonlin-
ear extended Kalman filter variants calls for feasible modelling
of the second order statistics of the associated state and ob-
servation noise processes. Usually, ad hoc models are used
for the state noise and pure measurement noise only is con-
sidered as the observation noise. In the approximation error
approach, these process noise models are constructed based ei-
ther on analytical derivations which are applicable only in linear
additive Gaussian noise cases, or based on Monte Carlo simu-
lations over the modelled distribution of all uncertainties, see
[10]. In this paper, this is carried out via the simulation of a
Navier-Stokes flow and the convection-diffusion process with a
stochastic model for the input boundary data, as well as simu-
lating the prediction errors of models with different refinement
levels.

Let Xt|t and Xt|t−1 denote the EKF filter and predictor estimates,
respectively. Further, let Γt|t and Γt|t−1 denote the (approxi-
mate) EKF filter and predictor covariances, respectively. The
recursive EKF algorithm in our case is of the form

Xt|t−1 = F (Xt−1|t−1)+EQt +EWt

Γt|t−1 = JFt
Γt−1|t−1JT
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+JFt
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R∗

t
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)(
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t
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+ΓVt
+JR∗

t
Cov(Xt ,Vt)+Cov(Vt ,Xt)JT

R∗
t

)−1
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I−KtJR∗

t

)
Γt|t−1 −KtCov(Xt ,Vt)

Xt|t = Xt|t−1 +Kt

(
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t

(
Xt|t−1

)
−EVt −EEt

)
where Cov(X ,Y ) is the cross-covariance of X and Y , and JH
refers to the Jacobian mapping of H (and other mappings).

Figure 1: Estimated and true coefficients β1,t and β2,t describ-
ing the velocity field.

In practice, the cross-covariances have to be set to zero matri-
ces. This is due to the problem that the filter and predictor co-
variances lose their non-negative definite property for numerical
reasons, thus making the algorithm unstable [4].

A Numerical Example

We consider the von Karman street, which involves flow past
a cylinder with Reynolds numbers between about 80 and 170
[21]. For the estimation of (the principal part of) the velocity
field, we estimate two components only, that is, we set p = 2
and estimate β2

t . This choice leaves about 4% of the variance of
the flow for the remainder.

We set the Reynolds number to Re = 100. As the measurement
protocol, an alternating sequence of two current patterns only
(across the pipeline) is employed.

In Figure 1, the p = 2 state estimates for the coefficient evo-
lutions β2(t) are shown. The corresponding state estimates for
the concentration are shown in Fig. 2. The concentration esti-
mates are relatively good from quite early on. The estimates
for βp seem to recover from the incorrect initial conditions and
covariances by about the 100th time step.

Conclusions

We have considered the simultaneous estimation of a time-
varying concentration distribution and a reduced order model
for an associated nonstationary Navier-Stokes flow. Based on
the numerical studies, the estimation scheme is in principle fea-
sible. The approach is based on the modelling of the related
uncertainties in the Bayesian nonstationary inversion frame-
work. In particular, the computational feasibility of the pro-
posed scheme is based on the nonstationary approximation er-
ror approach, in which approximate marginalization over the
uncertainties and errors is carried out.
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