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Abstract 

Using DNS data in a turbulent channel flow, the paper examines 

the effect of the surface geometry on the vorticity and (passive) 
scalar gradient vectors at a relatively small Reynolds number and 

for a molecular Prandtl number of 1. While a strong correlation 

between these two vector fields is expected close to the wall 

when the latter is smooth, significant changes occur when the 

surface is modified by roughness elements. Different shaped 

elements, placed orthogonally to the flow with a small 
streamwise spacing, are considered. The largest and smallest 

disturbances occur for triangular and square elements 

respectively whereas the disturbance from circular elements is 

intermediate to that of the previous two geometries. This result is 

reflected in nearly all the small-scale statistics that have been 
obtained, including correlations between components of the 

vorticity and scalar gradient vectors. Local isotropy near the wall 

is more closely approximated for the triangular elements. 

Introduction  

A ubiquitous feature of a turbulent flow in the vicinity of a 

smooth wall is the presence of quasi-streamwise vortices and 

their associated low and high-speed streaks. When a passive 

scalar is introduced in the flow, e.g. by slightly heating either the 

flow or the wall, the close correspondence between velocity and 

thermal streaks translates into a nearly perfect correlation, close 

to the surface, between the longitudinal velocity fluctuation u1 

and the scalar fluctuation θ ,e.g. Iritani et al. [7], Antonia et 

al.[2], Kim and Moin [8]. This is in turn reflected in strong 

correlations between some of the components of the vorticity 

vector and those of the scalar gradient vector. In particular, there 

is a strong correlation between either ω3 (the spanwise vorticity 

fluctuation) and θ,2 ( ≡
2/ x∂∂θ ,the derivative of θ  along the 

wall- normal direction
2x  ) or  ω2 (the wall-normal vorticity 

fluctuation) and θ,3 ( ≡
3/ x∂∂θ  the derivative of θ  along the 

spanwise direction 3x ) (Abe et al. [1]). The latter authors found 

that the maximum correlation coefficient  associated with the 

previous pairs of quantities is very close to either +1 or -1 and 

emphasized that these small-scale related quantities can provide 

more accurate statistics for the velocity and thermal streaks than 

u1 and θ.   

Since the quasi-streamwise vortices are by and large responsible 
for transporting momentum and heat near a smooth wall, it is 

important to understand how these vortices are affected by 

modifications to the surface in view of the obvious practical 

implications this has for managing turbulent wall flows. More 

basically, the streaks are no longer  observed when the surface is  

sufficiently rough so that it may be argued that a study of rough-

wall layers can help us, albeit indirectly,  to better appreciate  the 

role of the viscous layer as well as  the importance of the streaks.  

An earlier paper (Orlandi et al. [15]) considered the effect of 2D 

roughness elements, with various geometries, placed either along 

the flow direction or orthogonally to it on one of the walls of a 

turbulent channel flow, the opposite wall being kept smooth. For 

orthogonal elements, no satisfactory correlation could be found 

between the Hama roughness function and any of the usual 
parameters used for describing the roughness. On the other hand, 

a satisfactory collapse of the DNS data was obtained  by plotting 

the roughness function in terms of the rms wall-normal velocity, 

averaged over the plane of the roughness crests. Since the  

modifications to the wall-normal velocity fluctuation u2 are most 
likely caused by changes to the vortical structures in the vicinity 

of the elements, it seemed natural to extend the previous work by 

investigating how the roughness geometry affects the fluctuating 

vorticity vector and also, in the context of our earlier comments 

regarding the advantages of introducing a passive scalar in the 

flow, its relationship with the fluctuating scalar gradient vector.  

In this paper, we focus only on orthogonal  (drag-augmenting) 

elements with a streamwise spacing w that is comparable to the 

height k of the roughness elements and provide conventional 

statistics for these two vectors as well as for the non-zero 

components of the vorticity-scalar gradient tensor. Given that the 

two vectors reflect, to a large extent, small-scale characteristics 
of the turbulence, the statistics also provide a means of testing the 

approach towards local isotropy when the surface geometry is 

altered; this is of some interest in the context of modelling, 

especially in view of the strong anisotropy of the scalar gradient 

vector near a smooth wall [10]. We consider circular, square and 

triangular elements (see figure 1) of height k =0.2 h (h is the 
channel half-width). In each case, the ratio w/k is 1 so that the 

corresponding magnitude of the roughness function is small 

compared to its maximum value, which occurs typically when 

w/k is near 7 ( Leonardi et al.[11]).  

 

Numerical Procedure 

A detailed description of the numerical method has been given in 

[13]. Only the salient aspects are recalled here briefly. The 

incompressible Navier-Stokes and energy equations are 

discretised in an orthogonal coordinate system using the 

staggered central second-order finite difference approximation. 
The discretised system is advanced in time using a fractional step 

method with viscous terms treated implicitly and convective 

terms explicitly. The large sparse matrix resulting from the 

implicit terms is inverted with an approximate factorization 



technique. At each time step, the momentum equations are 

advanced with the pressure at the previous step, yielding an 

intermediate non-solenoidal velocity field which is subsequently 

projected onto a solenoidal one. A hybrid third-order Runge 

Kutta scheme is used to advance the equations in time. The 

roughness is treated by the efficient immersed boundary 

technique[5,15,16].This allows flows over complex geometries to 

be solved whilst avoiding computationally-intensive body fitted 

grids; the approach can handle flows above any kind of surface, 
albeit by clustering a large number of points near the elements. 

 

The computational box is 8h in the streamwise (x1), 2.2h in the 

wall-normal (x2) and πh in the spanwise (x3) directions with a 

grid of 400 x 158 x 128. Each roughness element (of height 0.2h) 

is described by a 10 x 30 grid. For the smooth wall channel flow, 

the Reynolds number Re, based on UP (the Poiseuille centre line 

velocity), is 4200; this corresponds to h+ ≈ 180. No heat sources 

are added to the temperature transport equation so that the total 

heat flux is approximately constant across the channel when 

steady state is reached; the temperature is assigned a value 
(normalized by the temperature on the upper wall) of +1 at the 

lower rough wall and  -1 at the upper smooth wall. The molecular 

Prandtl number Pr ( ≡ ν/κ, ν and κ  are the momentum and 

thermal diffusivities respectively) is set equal to 1. The 
coordinate system is such that the origin (x2) is at the centre of 

the channel. The roughness is placed on the bottom wall (x2 = - 

1.2h) with the plane of the crests at x2 = - h . The upper wall (x2 = 

+h) is smooth. The friction velocity on the rough wall is 

determined from the sum of the pressure integral around the 

roughness elements and the local shear stress on the surface[10].  
An experimental validation of the simulation was reported by 

Burattini et al. [3], albeit for one roughness geometry (square 

elements, with k = 0.1 h and w/k = 3) and three values of Re. In 

each case, reasonably good agreement was found for the mean 

velocity  and Reynolds stress profiles as well as spectra and 

integral length scales of  all three velocity fluctuations. 

Results 

A measure of the disturbance introduced by the roughness 

elements is given by the rms pressure distributions across the 

channel. These distributions (not shown here) indicate that the 

maximum rms pressure occurs at x2 =0, at the roughness crest ( 

over a smooth surface , it occurs at x2+ ≈ 30, as reported by Kim 

et al.[9]). Relative to the smooth wall peak value, the peak rms 

pressure over the roughness is significantly larger , by factors of 

almost 2, 6 and 7 for the square, circular and triangular elements 
respectively. The variation in the level of disturbance between 

these 3 geometries is illustrated via the instantaneous wall-

normal vorticity contours of Fig 1. For the square elements, the 

contours are somewhat elongated and resemble those over the 

smooth wall, alternating in sign along the spanwise direction. 

This particular geometry has been traditionally described as a ‘d-

type’ roughness, see e.g. [17,4,13].The vortical streaks are 

shorter and more steeply inclined to the wall for the circular 

elements. The inclination is increased further for the triangular 

elements. Although w/k is only 1, the ω2 contours over the 

triangular elements are not dissimilar to those presented by 
Leonardi et al. [12] and Ikeda & Durbin [6] for square elements 

but with a value of w/k that is close to that for which the drag is 

near its maximum value. One implication of the break-up  and 

loss of preferred orientation of the quasi-streamwise vortices by 

the roughness is that the vorticity  and scalar gradient 

concentrations become more evenly distributed between the x1 , 
x2 and x3 directions, thus indicating that the isotropic relations 
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should be more closely approximated over the triangular  and 

circular elements than the square elements or the smooth wall 

(the angular brackets denote averaging with respect to x1 , x3 and 

t). 

 

 

 

Figure 1 Instantaneous wall-normal vorticity contours 2ω = ± 3. The 

red and blue contours refer to positive and negative 2ω respectively. 

 

Figure 2 shows that this is indeed the case as the ratios '

2,

'

1, /θθ  

(figure 2a) and '

3,

'

1, /θθ  (figure 2b)  (the prime denotes the rms 

value) are closer to 1 for the triangular elements. For the circular 

elements, these ratios lie between those for the other two 

geometries. All three rms values (for both scalar derivative and 



vorticity components) increase as the geometry changes between 

square, circular and triangular shapes. This increase means that 

the mean enstrophy (effectively the mean energy dissipation rate) 

and mean scalar dissipation rate also increase accordingly. Note 

however that the rms values of the lateral scalar derivatives 

increase almost similarly among the three elements so that the 

distribution of '

3,

'

2, /θθ  (figure 2c) is basically unchanged. This 

latter ratio increases to almost 2 at the roughness crest plane, 

implying that local axisymmetry is not significantly improved by 
the roughness. A small but discernible variation exists for 

'

3,

'

2, / ωω  (figure 2f), the distribution over the triangular elements 

being closer to 1. Overall, the distributions of figures 2d, e, f 

indicate that local isotropy is more closely approximated by the 

vorticity vector than the scalar derivative vector, due mainly to  a 

stronger increase, relative to the lateral components,  in the rms 

streamwise vorticity than in '

1,θ . Nevertheless, one cannot ignore 

the major improvement in the local isotropy of  the scalar 

gradient vector as a result of changes in the surface geometry. 

For example, the maximum value of '

1,

'

2, /θθ  is reduced from 

about 6.2 (square elements) to 2.6 (triangular elements) ; at the 

same hx /2
, this ratio is close to 25 over the smooth wall. 

 

 

Figure 2 Ratios of rms scalar gradient and lateral vorticity components. 
The solid (blue), dashed (blue), dotted (red), dash-dotted (black) lines 

refer to the smooth wall , and the square, circular and triangular 

elements respectively. 

The correlation tensor <ωiθ,j> has four non-zero components : 

<ω2θ,3>, <ω3θ,2>, <ω1θ,3> and <ω3θ,1>, the remaining five 

components being zero by virtue of symmetry about 
3x . Smooth 

wall DNS data [1] have indicated that the correlation coefficients 

associated with the first two quantities reach a magnitude close to 
unity as the wall is approached. Figure 3 shows that the  

maximum magnitude of the correlation coefficient (defined as 

''/, βααβρ βα >=< ) between either ω2 and θ,3 (figure 3a) or 

ω3 and θ,2 (figure 1b) indeed approaches  1 on the smooth wall. 

This magnitude is however significantly reduced (by nearly a 

factor of 2) for the triangular elements; it is less affected  for the 

square elements. This reduction is not surprising in the light of 

the previous observations and results of figure 2. Note that the 

effect of the surface roughness geometry extends well beyond the 

channel centre line, especially in the case of the circular and 

triangular elements. As expected, all the four distributions 

become indistinguishable  near the upper ( smooth) channel wall. 

The distribution of 
θρ

1u
 (not shown here) is similar to that of 

2,2θωρ near the lower wall and also, allowing for the change of 

sign,  to that of
3,2θωρ . This result simply reflects the expected 

relatively strong correlation along streak boundaries between the 

gradients, with respect to either 
2x or 

3x , of 
1u  and those of θ . 
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Figure 3 Correlation coefficients between ω2 and  θ3 (a) or ω3 and θ2 

(b). Line types are as in figure 2. 

 

The peak values of the correlation coefficients associated with 

the pairs (ω1 and θ,3) (figure 4a) and (ω3 and θ,1) (figure 4b) are 

significantly smaller by comparison to those in figure 3. The 

former has a peak value of 0.25 near the wall and is somewhat 

less  affected by the roughness change than the latter. Near the 

smooth wall, <ω1θ,3> changes sign (increases from about -0.25 to 

about +0.25) due to the motion
3,2θωρ  induced by the non-slip 

boundary condition at the wall, e.g.[9,1]). This change in sign is 

also observed in the distribution (not shown here)  of <ω1 ω2>. 

The sign change is however no longer evident with either the 

cylindrical or triangular elements, the distributions of <ω1θ,3> 

and <ω1 ω2>  remaining positive throughout the channel. Whilst 

the streaks remain attached over the square cavities, thus 
allowing for a sign reversal in ω1, attachment is much less likely 

(e.g. figure 1) for the other two surfaces. 
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Figure 4 Correlation coefficients between ω1 and θ3 (a) or ω3 and θ1 (b). 

Line types are as in figure 2. 

 

Conclusions 

The present results indicate that the vortical motion, which is 
relatively well organised near a smooth wall, can become 

severely disorganized depending on the modification that is made 

to the surface. In this paper, the modification was brought about 

by the introduction of square, cylindrical and triangular elements 

aligned along the spanwise direction with a streamwise spacing 

equal to the height of the element. A passive scalar was also used 

to highlight the level of the disruption arising from the surface 

modification. While only minor changes, relative to the smooth 

wall case, were observed to the vorticity and scalar gradient 

vectors for the square elements, major changes occurred for the 

cylindrical and ,more especially, the triangular elements. These 
changes resulted in the vorticity vector and, to a smaller extent, 

the scalar gradient vector becoming more isotropic. The 

correlation between the lateral vorticity and scalar gradient 

components, which is almost perfect in the vicinity of a smooth 

wall is significantly reduced over the circular and, in particular, 

the triangular elements. 
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