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Abstract

A simple model for the flow around a slender body with per-

forated boundaries is proposed. The model employs the frame-

work of lubrication theory in which external flow is considered

as a potential flow of incompressible fluid and flow inside the

body can be well described by Poiseuille’s solution. The Darcy

boundary condition is imposed on the body surface. It is shown

that the model can be reduced to one ODE which in some cases

allows rather simple analytical treatment. Our analytical find-

ings are supported by numerical simulations.

Introduction

Flow systems with permeable boundaries have been extensively

studied in regard to the transport phenomena in geophysics,

chemical engineering and biophysics (e.g. water and oil trans-

port, mixing and filtration, microfluidics, cross-membrane traf-

fic in cells, chemotaxis, etc) and there is a vast amount of litera-

ture accumulated on these topics (i.e. see [14], [2], [4], [8] and

refs therein).

In application to the problems of aero– and hydro– dynamics the

permeability (perforation) of the flow boundaries has been tra-

ditionally considered as one of the most effective means to con-

trol the flow structure in order to yield some favorable changes

in the flow characteristics (delay of boundary layer turbuliza-

tion, shift of flow separation point, decrease of aerodynamic

noise, suppression of shock waves, etc). In particular, the most

promising means of drag reduction are still based on additional

fluxes across the perforated boundaries of the flow (i.e. sucking

fluid from the boundary layer, injecting polymers or microbub-

bles) (see [3],[9],[13] and refs). All this necessitates the de-

velopment of rather simple (i.e. analytically treatable), but still

scientifically rigorous (e.g. based on clear physics principles)

models for the flows with permeable boundaries, which can be

used to promptly estimate the effect of boundary permeability

on a particular flow system.

In this paper we present an analytical model of the incompress-

ible flow around a slender body with perforated (i.e. permeable)

boundaries. The model provides a simple analytical description

of the phenomenon and rigorously defines controlling parame-

ters of the flow. This is an extension of the model we developed

for application to different flow systems [11], [10].

We hope that this model, once validated numerically and/or ex-

perimentally, can be used as as a tool for some optimisation

studies and as a test case for more complex CFD models.

External Flow

Let us consider an axially symmetrical slender body in a uni-

form flow of incompressible inviscous fluid. The undisturbed

flow velocity U coincides with the axis of the body (axis z).

The shape (outer boundary) of the body is defined by the profile

function ro(z). The ratio ε = r∗/L (r∗ = max(ro), L is the body

length) is considered to be a small parameter of the model, i.e.

ε ≪ 1.

Figure 1: Geometry of the flow.

For the body with nonpermeable boundaries the pressure dis-

tribution po and the velocity potential φ are described by the

well-known formulas from the slender body theory [15]

po

ρ
= P0 −Uφ

′

−
φ2

r

2
, φ =

q

2π
lnr, (1)

where P0 = U2/2, q(z) =Us
′
, s(z) = πr2

0 is the cross-section of

the body, (·)
′
≡ d/dz, r2 = x2 +y2, φr = ∂φ/∂r.

The second formula in (1) can eventually be generalised if we

take into account the permeability of the boundary

q(z) = 2πr0(r
′

0U +V ), (2)

where V (z) is the velocity associated with the cross-boundary

flux.

The equation for V will be derived in the next section and we

will employ an iterative approach. This implies that at the first

step we set V = 0 (i.e. nonpermeable boundary) and use (1)

for the external flow. Then with calculated V expression (2)

provides a modified expression for the external flow with a finite

permeability of the boundary being taken into account. For the

second iteration we can use (2) and (1) for external pressure

and to refine the equation for V and so on. In the context of the

current paper we will consider only the first iteration.

In order for this iterative algorithm to converge, the following

condition can be derived from (2)

r
′

0 ≫V/U. (3)

We observe that it always holds for high velocity flow. We can

also validate this condition retrospectively.

Model of Flow Inside the Body

To deduce the equation for V we employ some ideas of lubri-

cation theory [1]. We assume that the interior of the body is

formed by a space (cavity) between two shells (a perforated ex-

ternal shell ro(z) and a nonpermeable internal shell ri(z)). Un-

der a pressure difference, fluid can penetrate through the outer



shell and then flow in the cavity ro(z) ≤ r ≤ ri(z). We consider

a case when gap h(z) = (ro − ri) ≪ ro(z) and the fluid flow in

the cavity can be well described by Poiseuille’s solution [15].

For the slender body geometry and for h(z) ≪ ro(z) the direc-

tion of the flow in the cavity is very close to the direction of

the z axis, so the direction perpendicular to the flow boundaries

coincides with r = {x,y} (lateral radius-vector in cylindrical co-

ordinate system). Following the well-known assumptions of the

lubrication theory [1] we consider all derivatives in the z direc-

tion to be negligible in comparison with the derivatives in the r

direction.

The flow across the outer surface of the body can be described

by the Darcy-law expression

V = K̃(pi − po), (4)

where V is the velocity of the flux across the boundary, K̃ =
K/d, K is the hydraulic conductivity of the boundary, d is its

thickness.1. Then we can easily write an equation for fluid dis-

charge across the lateral cross-section of the cavity in terms of

V :
dQ

dz
= 2πroV, (5)

where Q is the fluid discharge (a volume of fluid passing a cross-

section of the cavity per unit of time). For Q we can use the clas-

sical formula for the Poiseuille’s flow between coaxial cylinders

[5]

Q = GB
d pi

dz
, (6)

where B is the “shape” function

B(z) ≡ B(ro,ri) = r4
o − r4

i −
(r2

o − r2
i )2

ln(ro/ri)
, (7)

G = π/8µ, µ is the dynamic viscosity of the fluid. It is conve-

nient to redefine the shape function in terms of the gap thickness

h(z) = (ro(z)− ri(z)) ≪ ro(z), so

B(z) ≈ 4h2r2
o. (8)

From (4), (5), (6) it is apparent that our model can be reduced

to one equation for pi:

d

dz

(
B

d pi

dz

)
−λro pi = F, (9)

where λ = 2πK̃/G = 16µK/d is the “permeability ” scale,

F ≡ F(z) = −λro po (10)

and po(z) is given by (1) evaluated at the body surface (i.e. with

r = ro(z)). By using (1) the expression for F can be rewritten in

a form that explicitly depends on the body profile

F(z) =
ρU2

2
λro

[
(r2

o)
′′

log(ro)+
1

2
(r

′

o)
2

]
. (11)

The boundary conditions for the solution of (9) can be derived

from the symmetry arguments [11], [10]:

∂pi

∂z
(z = 0) =

∂pi

∂z
(z = L) = 0. (12)

The equations (1), (2), (4), (9) provide a closed solution for the

problem by enabling the calculations of flow inside and outside
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Figure 2: Body profiles used in numerical simulations: external

ro (red) and internal ri (blue), see Eqs. (23) and (24).

of the body in term of profile functions ro(z),ri(z), velocity of

external flow U and permeability of the outer surface K̃.

Preliminary Analysis

A comprehensive analytical treatment of the solutions of the

model (1), (2), (9) is outside of the scope of this paper. Here

we only briefly discuss some general properties of these solu-

tions, which can provide insight into the flow structure, associ-

ated control options and can help to understand the results of

numerical simulations.

As we can see from Eq. (9) the shape of body cavities (deter-

mined by profile ri(z)) does not directly control the flow struc-

ture, but only through the shape function B (7), (8). Since B is

the only parameter that consolidates the influence of the cavity

shape it significantly simplifies our theoretical analysis by re-

stricting it to the cases of limiting behavior of function B(z). Re-

call, that in derivation of (9) we have not imposed any “smooth-

ness” requirements on the profile ri(z), so for ri(z) (and hence

for B(z)) we can assume rather intermittent distributions. Dif-

ferent distributions of B(z) would correspond to the different

perforation patterns and different cavity shapes (see Fig 2).

The first limiting case corresponds to the condition B
′
(z)/L3 ≪

1 or B(z) ≈ B0 = const (constant shape function). According to

(8) it means that the cavity profile simply follows h(z) ∝ 1/ro(z)
for the majority of the length of the body and (9) can be reduced

to

p
′′

−κp = F , (13)

where p = 2pi/ρU2 is nondimensional pressure, F = 2F/ρU2,

κ(z) = ro(z)λ/B0. Then in nondimetional variables z = z/L ≤
1), r(z) = r0/r∗ = r0/εL this reads

p
′′

−σ2rp = σ2r f , (14)

where

f =

[
(r2)

′′

log(r)+
1

2
(r

′

)2

]
, (15)

and

σ2 = ελL3/B0 ≈ λL/4εh2
∗, (16)

with h∗ = max(h(z)). For the sake of notation simplicity we

have dropped bars on nondimensional variables.

The parameter σ is the only nondimensional parameter of the

problem that is responsible for a particular type of solution (i.e.

flow structure). From this point of view it is the “aggregated”

similarity parameter by changing which we can effectively con-

trol the global flow structure.

Since Eq. (14) is a linear ODE with variable coefficients its

solution can be written in the standard form

p = p1 + p2, (17)

1For a perforated boundary many analytical expression are available

to represent K in terms of hole size, hole density and their distribution,

see [14], [7] and refs therein



where p1 is the homogeneous solution of (14) (i.e. with f = 0)

and p2 is any particular solution of the full equation (14). If

the profile of the body is a slowly changing function (i.e. body

shape is close to a straight circular cylinder) then dro(z)/dz ≪
1, hence f in (14) is small and p1 ≫ p2.

The general properties of the solutions for p1, p2 can be easily

established for the limit σ ≫ 1 based on the WKB approxima-

tion. Following the text-book technique [6] we can write in this

case

p1 ≈
c1

(r)1/4
exp

[
R(z)

σ

]
+

c2

(r)1/4
exp

[
−

R(z)

σ

]
, (18)

where R(z) =
R z

0 (r)1/2dz. For the p2 we simply have

p2 ≈ f . (19)

From (18), (19) we can deduce an important property of the so-

lution: it has a decent maximum/minimum wherever the func-

tion R
′
(z) = 0.

In general, the value of constants c1,c2 should be established

from the boundary conditions (12) imposed on (17). Unfortu-

nately, asymptotic solutions (18) diverge near z = 0 and z = L

(nose and tail of the body) and cannot be used for this purpose.

This is a direct consequence of the well-known limitations of

the WKB approximation [6]. To overcome this difficulty an im-

proved approximation is required near z = 0 and z = L.

For the case σ≪ 1 it is straightforward to obtain an approximate

solution of (14) in terms of the power-law series

r0 ∼ ∑
m

amzm, p1 ∼ ∑
m

bmzm, p2 ∼∑
m

dmzm, (20)

with a few first terms being already a good approximation. We

will not discuss details of this procedure here.

In the opposite limit B
′
(z)/L3 ≫ 1 (rapidly changing shape

function) we derive the following equation

Bp
′′
+B

′
p
′
−σ2rp = σ2r f , (21)

where F is given by (15) and B0 = max(B) in (16). The sec-

ond term in LHS of this equation contains a derivative of the

shape function and becomes dominant in the areas with the

sharp changes of B(z).

The behavior of the solutions of (21) can be understood based

on the following qualitative arguments. Let us consider a piece-

wise distribution of B(z). Within each domain with B = const

the solutions discussed above still hold. In order to include

sharp changes (breaks) of B at the boundaries of the domains

we need to impose appropriate boundary conditions on the solu-

tion for p. Since Eq.(9) is the second-order equation, we should

impose two boundary conditions. The first condition is obvious,

since p(z) should be a continuous function (it is pressure), so we

simply have to impose p = const. The second condition can be

derived from Eq. (9) by integrating it across the domain bound-

ary. Thus, we arrive at the second condition p
′
B = const. We

can see that any break (or a sharp change) in the shape function

B(z) results in an associated change of the derivative p
′

while

p remains continuous. In particular, we can expect that for any

localised deformation of B(z) (i.e. a “boss” mounted on some

constant “background” B0) the solution for p(z) would be close

to one with B = B0, but with some deformation of the deriva-

tive p
′

corresponding to the position and the size of the “boss”.

From this it is also clear that even for an intermittent distribu-

tion of B(z) (i.e. a random configuration of bosses) we can still

use (14) with the

B0 ≈
1

L

Z L

0
B(z)dz (22)

as the first approximation for the solution of (21).

We found these arguments very useful for the “reverse-

engineering” profile ri(z) (i.e. shape of the internal cavity),

which can provide a desirable change in the external pressure

distribution. This phenomenological approach provides a pre-

dictable means to locally control the flow system under consid-

eration (global control is still best achieved by changing param-

eter σ defined by (16)). These qualitative conclusions are also

supported by our numerical simulations (see below).

Expressions (17), (18), (19) provide illustrative examples of a

variety of the solutions that can be produced by the proposed

model (1), (2), (9).

Numerical Simulations

All simulations were performed in MATLAB where we em-

ployed a standard ODE solver. We calculated solutions of (1),

(2), (4), (9) for the various body and cavity shapes. For illus-

tration purposes we present here results for two set of profiles,

corresponding to the smooth and the “wave-like” internal gap.

The profile of the smooth gap was given by expressions

ro/L = εz2(z−1), ri = γro, (23)

and the wave-like gap was modeled with

ro/L = εz2(z−1), ri = γro(1+ζsin2(6πz)), (24)

where z = z/L, γ = 0.8, ε = 0.8, ζ = 0.05. The values of σ =
0.0001 and σ = 0.00008 were used for the first and second case.
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Figure 3: Examples of numerical solution of Eq (9). Columns:

functions F(z),B(z), p(z) (see text for details). Top row: solu-

tion for body profile (23), bottom row - for profile (24), see Fig

2. The horizontal axis of all graphs shows the relative distance

from the leading edge of the body (ratio z = z/L).

Profiles (23) and (24) are plotted in Fig.2. For a given set of

profiles ro,ri we calculate functions B(z) (7), F(z) (11) and then

solve Eq. (9) numerically. Results of our calculations are de-

picted in Fig 3.

Discussion and Future Work

We found that the results of our numerical simulations confirm

properties of the analytical solutions described above. For in-

stance, the plots presented at the top row in Fig.3 are from

the family of solutions with slowly changing shape function



B(z), while plots at the bottom row correspond with the rapid

changes case. The deformations related to the maximums of

function B(z) (“bosses”) discussed in the previous sections are

also clearly visible. The comprehensive comparison of the ana-

lytical and numerical solutions of this model will be published

elsewhere.

The proposed framework allows a number of generalisations to

be made, that can be important for some practical applications.

For instance, let us assume that cavity ri ≤ r ≤ ro is filled with a

porous material with permeability Km. In such a case, equation

(6) for discharge Q still holds, but now with

B(z) = 2πKm(z)(r2
o(z)− r2

i (z)), (25)

where Km(z) = µξ(z) is the distribution of the hydraulic conduc-

tivity of filling material along the cavity, ξ(z) is its permeability.

In general, the flux across the boundary affects the external flow

and the associated pressure distribution po. The equations de-

scribing this influence can be readily deduced from (1), (9), but

in expression for po (10) we need to take into account the non-

linear terms associated with V in (2), (4) (so-called self-induced

pressure gradient). Thus, we can arrive at

−po =
ρU2

2

[
[ro(r

′

o +v)]
′

log(ro)+
1

2
(r

′

o +v)2

]
, (26)

where v = K̃(pi − po)/U .

From the mathematical point of view Eqs. (9), (26) form a non-

linear system of equations for two variables po, pi that can be

solved analytically or numerically. The nonlinear term po pi in

this equation describes the influence of the internal flow (i.e.

pi) on the external pressure distribution (i.e. po) and manifests

as a feedback in the flow system. The approximate solutions

describing this feedback can be obtained iteratively (by assum-

ing K̃ as a small parameter) with the solutions presented above

being the fist iteration. These solutions will be analysed in a

sperate publication.

An important practical application of this theoretical research is

a rigorous estimation of the effect of micro-perforation of the

boundaries on the turbulent fluctuations in the boundary layer

and associated flow noise [12]. Currently DSTO is develop-

ing a special test facility to enable investigation of such kind of

effects in conjunction with other flow characteristics. The ini-

tial development plan for the facility (so-called buoyancy driven

models) is to locate it in Lake St Clair in Tasmania. This lake

provides a quiet, deep environment in which buoyancy driven

models can be tested. DSTO has conducted a survey of the lake

bottom and identified a number of areas with suitable bottom

topography and depths varying from 60m to over 150m. The fa-

cility will incorporate a large “anchor” section which acts as the

model docking and release station, and a series of hydrophone

rings for flow noise measurement. Model instrumentation will

include inertial accelerometers and a velocity probe so that the

time to reach terminal velocity can be determined and the sec-

tion of “constant speed” flight can be monitored. Noise mea-

surements will be made using the ring hydrophones. The mod-

els will also be tested in the experimental hydrodynamic facil-

ities at University of Tasmania in Launceston to measure drag

coefficients. By varying the mass of the model, while main-

taining the same external shape a series of terminal speeds can

be measured; while interchangeable nose shapes and additional

“add-on” sections for the model allow the perforation of the

boundaries, the shape of the internal cavities and the overall

drag coefficient to be varied.

The review of and attention to this kind of research was re-

vived recently in light of the Collins class submarine replace-

ment project.

Conclusions

We presented a theoretical model for the flow around a slender

body with perforated boundaries, that allows analytical and nu-

merical treatments for an arbitrary profiles of the body and for

the internal cavity. We modelled the perforation of the outer

surface of the body with the Darcy boundary conditions and as-

sumed that the permeability of the surface is a small parameter.

We derived expressions for the characteristics of the flow in-

side and outside the body and identified parameters that can be

used for the effective flow control. Our results are supported by

numerical simulations.

More extensive numerical validation will be required before we

can proceed with the experimental validation of the model.
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