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Abstract 
A reliable method is presented for robust estimation of the 
expensive objective functions in single objective optimization 
algorithm. Multi Layer Perceptron Neural Net (NN) is 
successfully implemented for evaluating computationally 
expensive aerodynamic objective functions while the normal 
distribution concept is applied to determine the parts of the 
design space which are trained to the NN. Detecting these parts, 
NN is successfully implemented for evaluating computationally 
expensive aerodynamic objective functions in design 
optimization of airfoil shape at viscous transonic flow conditions. 
This approach, results in more precise NN estimation while 
decreasing the NN requirements. The accuracy and efficiency of 
the method is validated with simple Genetic Algorithm. The total 
number of flow solver calling is noticeably reduced through 
using this technique, which in turn reduces the total time without 
deteriorating the optimization algorithm.  
 
Introduction  
Among different methods for aerodynamic optimization, Genetic 
Algorithms are known to possess unique capabilities compared to 
other methods. The fundamental aspects of Genetic Algorithms 
are described in reference [12]. One of the key features of a GA 
is that it searches the design space from a population of points 
and not from one special point resulting in a greater likelihood of 
finding the global optimized point. Another advantage of using a 
GA is that it uses only the objective function and does not require 
its derivatives. These features and some other features made GAs 
attractive to practical engineering applications such as 
aerodynamic shape optimization [17, 19, 15]. However, a GA has 
the disadvantage of being computationally time-consuming in 
aerodynamic optimization problems. Several attempts have been 
made such as parallel processing [13, 3] or adaptive GA [14] in 
order to decrease the time required by GA but considerable work 
is yet to be done.  
The increasing amount of available information from successive 
generations during the optimization process has encouraged 
researchers to introduce a new field in fitness function 
approximation. Many fitness function approximation models 
(surrogate models) are introduced until now which approximate 
the expensive objective functions. These models are trained 
using the existing set of evaluated solutions and can search 
for promising solutions. A literature survey reveals that many 
of the new approaches of GA utilize these methods to reduce 
the total time associated with optimization process. Chung, et 
al. applied merit Functions to supersonic Business Jet drag 
minimization problem and showed that Response Surface model 
can be used in a global optimization problem [1]. Interesting 
fitness approximation techniques can be found in [6].  
Among different surrogate models, NN are particularly suitable 
for the representing objective functions that incorporate several 
design variables. Since most design problems in Aerodynamics 
involve lots of parameters, NN seem to be a suitable choice for 
these cases. Karakasis and Giannakoglou used Radial Basis 
Function Net Works in transonic aerodynamic multi-objective 
optimization of airfoil shape [9]. In another research, 
Giannakoglou et al. utilized gradient-assisted NN in several 
aerodynamic optimization problems [10].  

 
 
 
 
Despite their wide usage, there are many important subjects that 
require careful tuning when incorporating NN in the evolutionary 
algorithms. Among them are the number of generations which 
should run using GA, in order to provide a rich training set for 
NN and the number of patterns needed to train the surrogate 
model [10].  
To cover these problems, the normal distribution concept is used 
in this research. To improve the application of Neural Networks 
(NN) in evaluating computationally expensive aerodynamic 
objective functions, the normal distribution is applied to 
determine that part of the design space which is trained to the 
NN. Detecting these parts, the NN is successfully implemented 
for evaluating computationally expensive aerodynamic objective 
functions in evolutionary optimization of airfoil shape at 
transonic high Reynolds number flight conditions.  
 
 
 
 
 

 
 
 
 

 
Figure 1. PARSEC method for airfoil parameterization 

 
 
 
 

 
 

 
 
 
 
 
 

 
Figure 2. Parameters used for TE modelling 

 
 
 
Aerodynamic Optimization Using GA 
Genetic Algorithms are attractive for aerodynamic design 
optimization since they are more likely to find a global optimum. 
GA utilizes the three operators of reproduction, cross over and 
mutation. More information about GA can be found in [9].  In the 
present study simple Genetic algorithm is applied to the 
optimization of a transonic airfoil. Thus, fitness, chromosomes 
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and genes are corresponding to the objective function, design 
candidates and design variables, respectively. There are twenty 
individuals in each generation. Selected airfoil shapes comprise 
the initial population for comparison purposes. Then, the 
population is optimized according to the objective function value 
(fitness) through the Genetic Algorithm which is considered to be 
the ratio of the lift coefficient to drag coefficient (Cl/Cd). The 
overall process consists of evaluation, selection, crossover and 
mutation.  
Selection is a process in which chromosomes are copied in 
mating pool according to their fitness. In this work the 
tournament operator [2] is used with an elitist strategy where the 
best chromosome in each generation is transferred into the next 
generation without any changes.  
The crossover operator exchanges the chromosomes of the 
selected parents randomly. A simple one-point crossover operator 
is used with an 80% probability of combination, as the use of 
smaller values was observed to deteriorate the GA performance. 
Mutation is carried out by randomly selecting genes of each 
chromosome and changing their values by an arbitrary amount 
within prescribed ranges. In this work the mutation probability is 
set to 10% and then adds a random disturbance to the parameter 
about 15% of design space that defined for each chromosome’s 
gen. Optimization is then accomplished by a conventional GA.  
Design parameters are a combination of PARSEC and a new 
method for trailing edge modelling introduced in [18] these 
parameters are shown in Figures 1 and 2. Z∆  the trailing edge 
is computed using the following equations. 
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The considered values forµ  , η  and n are 1.3, 0.8 and 6, 
respectively. Trailing edge coordinate )( TEZ and thickness 
parameters of PARSEC method are considered equal to zero thus 
they can be omitted from the list of design variables. Therefore 
the total number of design variables is increased to 10 which 
include leading edge radius )( LEr , upper and lower crest location 

),,,( LOLOUPUP ZXZX  and curvature ),( xxLOxxUP ZZ , trailing 
edge direction )( TEα and wedge angel )( TEβ  from PARSEC 
method and 

TEα∆  from new method for trailing edge modelling. 
The total number of the design parameters applied in this method 
is ten. 

Figure 3. Multi layer Perceptron with two layers 
 
 
Flow Solver 
The huge numbers of airfoil shapes that are generated by the 
Genetic Algorithm are evaluated based on numerical simulation 

of viscous flows governed by Navier-Stokes equations using a 
finite-volume cell-centred scheme. To decrease the 
computational time, an implicit method is used in the present 
work. The method is a dual time implicit method that follows the 
work of Jahangirian and Hadidoolabi for unstructured grids [4]. 
Further details of the method can be obtained from the above 
reference. 
The computational field is discretized utilizing triangular 
unstructured grids. A successive refinement method is used for 
unstructured grid generation [5]. During the design process, the 
mesh is continuously updated as the shape of the geometry 
changes. In the present work, the primary mesh generated around 
initial airfoil is moved to be fitted to the new generated airfoil 
using spring analogy.   
 
Application of Neural Nets in Optimization Algorithm 
One of the main concerns in the aerodynamic optimization with 
GA is the required computational effort. One idea to deal with 
this problem is using the parallel computing, which is highly 
compatible with the evolutionary algorithms. Despite its 
efficiency in reducing the time consumed by GA, the required 
hardware is sometimes expensive and time consuming in 
practice. The other idea, which is followed in this work, is 
utilizing the approximate methods in order to estimate the 
objective function values. These approximate methods use 
surrogate models to predict the time consuming objective 
functions. According to what mentioned in the introduction 
section, several surrogate method have been used in literature [6, 
7, 9].   Among all fitness function approximation methods, 
Neural Network (NN) is widely used in the estimation of the 
costly objective functions [10, 11, 16]. The most common Neural 
Network models are the Radial Basis Function Net work (RBFN) 
and the Feed-forward Multi-Layer Perceptron (MLP). MLP, 
which is utilized in this research, is illustrated in Figure 3.This 
type of Neural Network is known as supervised NN because it 
requires a desirable output in order to learn. One of the most 
popular methods for NN training is Back Propagation method 
(BP) which is utilized in this paper. More information about 
Multilayer Perceptron and Back Propagation can be found in [6]. 
The goal of this type of Neural Network is to create a model that 
correctly maps the input to output using the training data. This 
model can then be utilized to produce the output when the related 
function is unknown or expensive to use.  
 
Fitness Function approximation Using Neural Net and 
Normal Distribution Concept 
Regarding its application in GA, Neural Network can be trained 
either off-line or on-line. In the off-line approach, the NN model 
is trained using the data which are built during a specified 
generation in the optimization process. Once such a NN has been 
trained, it is used to evaluate the fitness values in the 
optimization algorithm. The most important problem associated 
with this method of learning is that the trained data set may not 
cover the entire design space. Therefore NN is not able to 
provide the acceptable values for the fitness function. During the 
on-line learning in NN, data can be added to the NN without any 
change to the previous results or revaluations. Therefore this 
approach is much more reliable than the off-line learning but the 
efficiency of the method highly depends on the method. More 
detailed discussion about on-line and off-line training can be 
found in [9]. The on-line learning process updates the training set 
through the evolution. Different methods of training about on-
line learning process are studied in [11].  
Once a Neural Net has been trained, it is used to evaluate 
candidate solutions generated by GA. However the discrepancy 
between the fitness obtained from the exact solution and NN 
should be controlled and limited to avoid converging to incorrect 
optimum during the optimization process.  
The Neural Network structure used here is based on a two hidden 
layer Feed-forward Perceptron network. The Neural Network 
inputs at first layer include the values of genes for each 
chromosome and the output is the fitness value of the same  

Input Layer Hidden Layers Output Layer 
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Figure 4. Normal distribution curve 

 
 

chromosome at output layer. The hidden layers have 10 neurons. 
Training data consist of chromosome’s genes and fitness values 
at a specified generation.  
To improve the reliability of the fitness values computed in the 
NN, a new method is used to determine the capability of NN in 
providing a suitable guess for fitness value. Similar to the 
previous method, a training data set is prepared after pacing some 
generations. This data set is then trained to NN. To determine the 
scattering of the data, normal distribution of the training data set 
is calculated. The normal distribution curve is a continuous, bell-
shape, symmetric distribution. It is shown in Figure 4 for a 
sample data. Normal distribution in this figure is gained utilizing 
normal distribution function. Normal distribution function shows 
the distribution of the probabilities and is calculated using the 
following equation. 
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µ  and σ , are the mean value and the standard deviation which 
are obtained through the following equations. 
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In the equations above, iX  is the ith data and N is the number of 
data. The mean deviation represents the central point of the 
distribution, while the standard deviation describes the width of 
the distribution. The higher the standard deviation, the wider the 
normal curve will be. Mean and standard deviations of a sample 
data are shown in Figure 4.  
The specified range in Figure 4, i.e. the range between σµ −  
and σµ +  is the most populated part of the population 
distribution. Therefore, determining the normal distribution, it is 
decided whether a specific individual is in the part of design 
space which is trained to NN, i.e. the most populated region in 
the train set or not. The NN used here applies an on-line training 
method, i.e. if it was decided to use flow slower for evaluation of 
objective function according to the above criteria, the information 
related to this individual are added to the training set for the next 
generation.  
 
Results  
To show the efficiency of the proposed approach, it is utilized in 
the aerodynamic optimization of a viscous transonic airfoil shape.  
 

 
 

 
Figure 5.  Number of flow solver calls in each generation 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Convergence history of the maximum objective 

function 

 
Figure 7.  Average error of NN estimation 

 
The optimization is carried out at transonic flight conditions of 
Mach Number 0.75 and incidence angle of 2.79 degrees and 
Re=6.5 million. Initial airfoil is RAE 2822.  
The objective function is lift coefficient to drag coefficient 
(Cl/Cd) and twenty individuals are considered in each generation. 
NN is applied after 16 generations when enough data are 
generated for training.  
Figure 5 shows the number of the CFD runs during the 
optimization process using the suggested approach. The total 
number of the CFD runs in NN assisted GA is 603 which 
provides 33.15% decrease in flow solver calls when compared 
with GA. 
Figure 6 shows the convergence history for both simple GA and 
surrogate assisted GA. According to this figure, both methods 
follow similar curves. The maximum objective value gained by 
surrogate assisted GA is very close to the one obtained by GA.  
Figure 7 shows the square root of the mean square error of NN 
estimation for each generation. The maximum error is related to 
35th generation and is 1.07% which is an acceptable value. 
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Figure 8. Normal function distribution and range specification of the sixteenth generation 
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The number of the CFD runs in each generation, is quite random, 
depending on the location of the individuals in the normal 
distribution curve. Figure 8 shows the normal distribution and the 
range between σµ −  and σµ +  for ten chromosomes 
representing the design variables generated during the first fifteen 
generations in the Genetic Algorithm. Two individual of the 
sixteenth generation are also selected randomly and their 
positions are shown in this figure in order to decide about the 
method that should be applied for computing their objective 
values. It is illustrated in the picture that in the case of the first 
individual, the chromosomes fell outside the specified ranges 
except for the second chromosome of the first individual. 
Therefore the objective function for this individual is computed 
using flow solver. However, in the case of the second individual, 
chromosomes are within the ranges excluding the eighth 
chromosome. The objective function of this individual is 
estimated using NN. This method is used for the entire 
individuals of each population. 
Figure 9 illustrates unstructured grids around initial airfoil. 
Figures 10 and 11 compare the results of the optimized airfoil 
shapes from a Genetic Algorithm and the combination of the 
Genetic Algorithm and the described NN.  These figures confirm 
that optimum airfoil shape resulting from proposed surrogate 
model is very similar to the optimum shape obtained though GA. 
Artificial Neural Network was successfully implemented in 
evaluation of costly aerodynamic objective functions. Normal 
distribution of the trained data set was determined in order to 
specify weather the NN is able to provide an accurate 
estimation for a special individual and training data set was 
updated at the end of each generation. The results obtained were 
compared with simple GA to show the capability of the surrogate 
method in providing precise guess for aerodynamic objective 
functions. The comparison show that there is negligible 
difference between simple GA and proposed surrogate assisted 
GA, making the proposed method practicality more applicable 
for optimization problems 
 
 
Conclusions 
Artificial Neural Network was successfully implemented in 
evaluation of costly aerodynamic objective functions. Normal 
distribution of the trained data set was determined in order to 
specify weather the NN is able to provide an accurate 
estimation for a special individual and training data set was 
updated at the end of each generation. The results obtained were 
compared with simple GA to show the capability of the surrogate 
method in providing precise guess for aerodynamic objective 
functions. The comparison show that there is negligible 
difference between simple GA and proposed surrogate assisted 
GA, making the proposed method practicality more applicable 
for optimization problems.   
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