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Abstract 
The natural convection thermal boundary layer adjacent to an 
abruptly heated inclined flat plate is investigated through a 
scaling analysis and verified by numerical simulations. In 
general, the development of the thermal flow can be 
characterized by three distinct stages, i.e. a start-up stage, a 
transitional stage and a steady state stage. Major scales including 
the flow velocity, flow development time, and the thermal and 
viscous boundary layer thicknesses are established to quantify the 
flow development at different stages and over a wide range of 
flow parameters. Details of the scaling analysis and the numerical 
procedures are described in this paper.   
 
Introduction Natural convection is a very common 
phenomenon in nature. Natural convection along an inclined 
plate has received less attention than the cases of vertical and 
horizontal plates. However, natural convection heat transfer from 
an inclined surface is very frequently encountered in engineering 
devices and the natural environment. A large body of literature 
exists about an inclined semi infinite flat plate because of its 
engineering application [1, 2, 10, 12]. Most of the previous works 
have been conducted by either numerical simulations or 
experimental observations. Theoretical or scaling analyses have 
not played a significant role for this type of problem, especially 
with regard to the transient flow behavior from start up, which is 
of great fundamental interest and has practical importance. In 
contrast to the inclined plate problem, very detailed scaling 
analysis has been carried out for the transient flow in rectangular 
cavities with differentially heated sidewalls [8], and theoretical 
analyses of triangular cavities with a sloping bottom have also 
been reported in the context of natural convection induced 
circulation in coastal waters [3, 4] 
 
Scale analysis is a cost-effective way that can be applied as a first 
step in understanding the physics underlying the fluid flow and 
heat transfer issues. The results of scale analysis can serve as a 
guide for both experimental and numerical investigations. 
Therefore, scaling has been used by many researchers to 
investigate the transient flow development for different kinds of 
geometries and thermal forcing. Patterson & Imberger [8] carried 
out an extensive investigation of the transient behavior of natural 
convection of a two dimensional rectangular cavity in which the 
two opposing vertical sidewalls are simultaneously heated and 
cooled by an equal amount. The authors proposed several flow 
regimes of the transient flow development based on the relative 
values of the Rayleigh number Ra, the Prandtl number Pr, and the 
aspect ratio of the cavity A. Schladow, Patterson & Street [11] 
conducted a series of two- and three- dimensional numerical 
simulations of the transient flow in a side-heated cavity, and their 
simulations generally agree with the results of the scaling 
arguments of Patterson & Imberger [8]. 
Scaling analyses coupled with numerical simulations have been 
used in a variety of other geometries and thermal forcing. For 
example, very recently, Lin & Armfield [5, 6,7] investigated the 

transient processes of cooling an initially homogeneous fluid by 
natural convection in a vertical circular cylinder and in a 
rectangular container. 
 
To identify possible flow regimes of the unsteady natural 
convection flow in a small-slope shallow wedge induced by the 
absorption of solar radiation, Lei & Patterson [3] presented a 
scaling analysis and established relevant scales to quantify the 
flow properties in each flow regime. They classified the flow 
development broadly into one of three regimes: a conductive 
regime, a transitional regime and a convective regime, depending 
on the Rayleigh number. 
 
Scaling analysis of the transient behavior of the flow in an attic 
space was conducted by Poulikakos & Bejan [9], valid for 
shallow spaces i.e H/B → 0, where H and B are the attic height 
and length respectively. The transient phenomenon began with 
the sudden cooling of the upper slopped wall. It was noted that 
both walls developed thermal and viscous layers whose thickness 
increased towards steady state values. The authors mentioned 
that, by properly identifying the timescales of various features 
that develop inside the enclosures, it was possible to predict 
theoretically the basic flow features that would endure in the 
steady state. Finally, they focused on a complete sequence of 
transient numerical simulations covering a range of controlling 
parameters including the Grashof number, the aspect ratio and 
the Prandtl number.  
 
In this study, the behavior of the two dimensional transient 
natural convection flow adjacent to a heated inclined flat plate is 
investigated by scaling analysis and numerical simulation for Pr 
less than unity. The scaling analysis is carried out to develop 
scaling relations for the parameters characterizing the flow 
behavior at different stages of the flow development. These 
scaling relations are then validated by a series of numerical 
simulations with selected values of the Prandtl number (Pr), 
Grashof number (Gr), and aspect ratio (A) in the ranges of 0.01 ≤ 
Pr ≤ 0.72, 3.59×105 ≤ Gr ≤ 4.24×107 and 0.1 ≤ A ≤ 1.0. There is 
no experimental data available to validate with the numerical and 
analytical solutions obtained here. Since our aim is to analyze 
laminar model, we have restricted the range of the Grashof 
numbers as above.     
 
Problem Formulation 
The physical system sketched in Figure 1 consists of an inclined 
flat plate (AB). We extend both sides of the plate by a distance 
equal to its length and form a rectangular domain, which is filled 
with a stationary fluid at a temperature Tc. If we consider the 
plate as the hypotenuse of a right angled triangle then the altitude 
is h, the length of the base is l and the angle of the plate, which 
makes with the base is θ. Except for the plate (the AB section 
shown in figure 1), all walls of the rectangular domain are 
assumed to be adiabatic. At the time t = 0, the plate is suddenly 
heated to Th = Tc+ΔT and thereafter maintained at this 
temperature. 
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Figure 1. Schematic of the boundary layers developing along the inclined 
wall. 
 
Under the Boussinesq approximations the governing continuity, 
momentum and the energy equations take the following forms. 
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where u and v are the velocity components parallel and normal to 
the inclined surface respectively. T is the temperature, p is the 
pressure, t is the time, g the acceleration due to gravity, θ is the 
angle of the inclined plate with the horizontal base, and ν, ρ, β 
and κ the kinematic viscosity, density, coefficient of thermal 
expansion and thermal diffusivity of the fluid respectively. All 
fluid properties are evaluated at the temperature Tc. 
 
Scaling Analysis 
Thermal Layer Development 
The instantaneous heating on the flat plate triggers the transient 
natural convection phenomenon. A thermal boundary layer 
develops adjacent to the inclined plate. The energy equation (4) 
indicates that since the fluid is initially motionless the heating 
effect of the plate will first propagate into the fluid layer through 
pure conduction, resulting in a thermal boundary layer of 
thickness O(δT). Within the boundary layer, the dominant balance 
is that between the unsteady and diffusion terms in the energy 
equation (4), giving, 

2/12/1~ tT κδ  (5) 
In the momentum equation (2), the unsteady inertia term is of 
O(u/t), the viscous term O(νu/δT

2), and the advection term 
O(u2/AB). The ratio of the advection term to the unsteady term is 
then O(ut/AB). For very small time ut/AB << 1. Therefore the 
advection term is not significant for small time. The ratio of 
unsteady to viscous terms is (u/t)/(νu/δT

2) ∼ δT
2/(νt) ~ 1/Pr, 

where Pr = ν/κ.. For Pr << 1 the viscous term is much smaller 
than the unsteady term, and the correct balance is between the 
unsteady term and buoyancy. However for Pr >> 1, the unsteady 
term is much smaller than the viscous term, and the correct 
balance is between viscosity and buoyancy. If Pr ~ O(1), then the 
unsteady and viscous terms are of the same order, and thus both 
terms need to be included in a balance with the buoyancy term. 

The unsteady term is O(u/t) and the viscous term is O(Pru/t), so 
these two terms together are O((1 + Pr)u/t). Now the balance in 
the inclined momentum equation is 
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t
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Therefore u ~ gβsinθΔTt/(1+Pr) ⇒  u ~ gβcosθ tanθΔTt/(1+Pr). 
The slope or aspect ratio is tanθ = A and cosθ = l/(l2+h2)1/2 = 
1/(1+A2)1/2. Hence, 
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where the Rayleigh number is defined as Ra = gβΔTh3/νκ.  
 
As time passes, the boundary layer thickness δT continues to 
grow until a balance between convection and conduction. 
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Using the velocity scales (6) and (7) we conclude that the growth 
of the boundary layer along the plate ends at a time of the order 
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The thickness of the thermal boundary layer along the plate at the 
steady state time ts is 
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At the time when the thermal boundary layer reaches the steady 
state, the u velocity scale is 
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Viscous Layer Development 
Concurrently with the formation of a thermal boundary layer, the 
diffusion of vorticity into the enclosure generates a viscous 
boundary layer. The thickness δv of this viscous layer is a direct 
result of a balance between the viscous and inertia terms in the 
momentum equation, 

( ) Tv Prt δνδ 2/12/1 ~~  (11) 
Here it is noted that for Pr < 1, viscous boundary layer thickness 
is smaller than that of the thermal boundary layer. However, the 
opposite is true when Pr > 1. When the thermal layer has reached 
the steady state, the viscous layer has a thickness of order 
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Numerical Procedure 
In order to validate the various scales given in the previous 
section, a series of numerical simulations have been carried out 
for the cases described in Table 1. Equations (1) - (4) are solved 
along with the initial and boundary conditions using the SIMPLE 
scheme in Fluent 6.3.26, in which the spatial derivatives are 
discretised with a second order upwind scheme and the diffusion 
terms with a second order center-differenced scheme. The 
temporal derivatives are discretized with a second order implicit 
scheme. To ensure that a sufficiently high accuracy is achieved in 
the numerical simulations, a non-uniform computational mesh 
has been used which concentrates points in the boundary layer 
and near the plate, and is relatively coarse in the interior of the 
domain. Mesh and time step dependence tests have been carried 
out for three different inclination angles (aspect ratios). The time 
steps have been chosen in such a way that the CFL (Courant-
Freidrich-Lewy) number remains the same for all meshes. 
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Figure 2: Time series of maximum velocity parallel to the inclined 
surface calculated on the line normal to the surface at mid point for (a) A 
=0.1 and (b) A = 0.5 and 1.0, while Gr = 4.24×107 and Pr = 0.72. 
 
 
A mesh and time step dependence test has been conducted for the 
highest Grashof number case. It is expected that the selected 
mesh for the highest Grashof number is appropriate for all the 
lower Grsahof numbers. The time histories of the calculated 
maximum velocity parallel to the sloping wall with four different 
meshes are plotted in figure 2. It is seen in this figure that all 
solutions indicate three stages of the flow development, an initial 
growth stage, a transition stage and a steady state stage. In the 
initial growth stage, the four solutions follow each other closely 
(except for the solution with a coarse mesh 330×150, which 
deviates slightly from the other three meshes for A = 0.1 in figure 
2a). The transition stage is characterized by a single overshoot. 
The time to reach the steady state is around 1.5s, 2.2s and 7s for 
A = 1.0, 0.5 and 0.1 respectively. The maximum variation of the 
velocity between the coarsest and finest meshes for A = 0.1 is 
approximately 3.8%, and the maximum variation among the 
three fine meshes is approximately 1.4%. The maximum 
variations of the velocity between the coarsest and finest meshes 
for A = 0.5 and 1.0 are 1.3% and 0.4% respectively. Therefore a 
fine mesh of 440 × 200 for A = 0.1 and a relatively coarse mesh 
of 340× 200 for aspect ratio A = 1.0 and 0.5 are adopted for the 
present simulations. 
 
Validation of the Scaling 
The three relations for the steady state boundary layer 
development can be re-written as 
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 Table1: Values of A, Gr and Pr for the 12 runs. 

Run number A Gr Pr 

1 0.5 4.24×107 0.72 
2 0.5 8.48×106 0.72 
3 0.5 3.59×106 0.72 
4 0.5 7.18×105 0.72 
5 0.5 3.59×105 0.72 
6 0.5 4.24×107 0.5 
7 0.5 4.24×107 0.1 
8 0.5 4.24×107 0.05 
9 0.5 4.24×107 0.025 

10 0.5 4.24×107 0.01 
11 1.0 4.24×107 0.72 
12 0.1 4.24×107 0.72 

 
From Table 1, Runs 1-5 with Gr = 4.24×107, 8.48×106, 3.59×106, 
7.18×105 and 3.59×105 while keeping A = 0.5 and Pr = 0.72 
unchanged have been carried out to show the dependence of the 
scaling relations on the Grashof number Gr; Runs 6-10 with Pr = 
0.5, 0.1, 0.05, 0.025 and 0.01 while keeping A = 0.5 and Gr = 
4.24×107 unchanged have been carried out to show the 
dependence of the scaling relations on the Prandtl number Pr; 
Runs 11-12 and 1 with A = 1.0, 0.1 and 0.5 while keeping Gr = 
4.24×107 and Pr = 0.72 unchanged have been carried out to show 
the dependence on the slope, A of the inclination of the plate. 
 
The velocity components and the temperature have been recorded 
at several locations along a line perpendicular to the plate at the 
mid point to obtain the velocity and temperature profiles along 
that line.  The maximum velocity parallel to the plate, us has been 
calculated from the velocity components and is used to verify the 
velocity scale relation.  
 
The thermal boundary-layer thickness δT is defined as the 
perpendicular distance from the mid point of the heated wall to 
the location where the temperature difference between the fluid 
in the thermal boundary layer and the ambient drops to 0.01(Th − 
Tc). The steady state time, ts for the boundary-layer development 
to reach the steady state is determined as the moment when the 
first trough appears in the time history of the u, maximum 
parallel velocity along the line perpendicular to the plate at the 
mid point (see figure 2). 
 
Numerical results of the scaling laws for steady state time, 
thermal boundary layer thickness and the velocity parallel to the 
plate, (8), (9) and (10) respectively, are presented in Figure 3. It 
is seen in the figure that the numerical results agree very well 
with the scaling relations. For all the calculated cases, the 
numerical results fall approximately onto a straight line, which 
proves that the scaling relations (8), (9) and (10) properly 
describes the thermal boundary layer in the steady state. 
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Conclusions 
Natural convection adjacent to a heated inclined flat plate is 
examined by a scaling analysis and verified by numerical 
simulations. It is found that the flow is dominated by three 
distinct stages, i.e. a start-up stage, a transitional stage and a 
steady stage. Major scaling relations describing the thermal 
boundary layer adjacent to the heated plate have been established 
in this study, which are the maximum velocity parallel to the 
inclined plate inside the boundary layer (u), the time for the 
boundary layer to reach to the steady state (ts) and the thermal 
and viscous boundary layer thicknesses (δT and δv). Through 
comparisons of those scaling assumptions with the numerical 
simulations, it is found that the scaling results agree very well 
with the numerical simulations. Hence the numerical results have 
confirmed the scaling relations, which characterize the transient 
flow development. 
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