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Abstract

This paper reports results from a large–eddy simulation of a
temporal mixing layer using the stretched–vortex subgrid stress
and mixing models. The simulation achieves a Reynolds num-
ber of about 2×107 when based on the momentum thickness.
Linear growth of the momentum thickness and collapse of the
mean velocity and scalar concentration profiles suggest that the
flow is self–similar. Considerable variability is, however, ob-
served in the Reynolds stress and integrated kinetic–energy dis-
sipation rate.

Introduction

Turbulent mixing is an important fundamental and unresolved
problem in fluid mechanics and is crucial in many industrial
and scientific contexts. Prediction of many turbulent flows
remains impracticable due to the enormous computational re-
sources needed to resolve all relevant scales. This problem
is mitigated in a large–eddy simulation where only the large
scales are resolved, while the fine subgrid or unresolved scales
are modelled.

Pullin and coworkers [7, 12, 8] have developed subgrid stress
and mixing models by assuming that the subgrid motion con-
sists of an homogeneous ensemble of stretched spiral vor-
tices. A particularly attractive feature of these models isthat
it is possible to calculate both resolved and subgrid contribu-
tions to statistical quantities. The potential of these models
has been demonstrated by recent simulations of compressible
Richtmyer–Meshkov instability [3]. Due to the complexity of
that flow, the data available for comparison are limited. Thepur-
pose of the present work is to apply the subgrid stress and mix-
ing model to a simpler flow for which there is a more compre-
hensive collection of quantitative high Reynolds–number data
available for comparison.

The plane mixing layer is a canonical turbulent flow that forms
between two uniform parallel streams of fluid that have different
velocities. In experiments, this flow is typically producedby
merging two separate streams that are initially separated by a
plate. The flow then develops spatially from the trailing edge
of the plate. When the streams are opposite in direction and
have the same speed, the mixing layer grows in time. Although
the spatial and temporal flows are different, useful comparisons
are still possible if the velocity ratio of the two streams ofthe
spatial mixing layer is sufficiently close to one [9].

Numerous experimental and numerical studies have established
self–similar mixing layers. Unfortunately, in the case of aspa-
tial mixing layer, the ultimate state does not appear to be uni-
versal but may depend on inlet boundary conditions [10]. In the
case of a temporal mixing layer, this corresponds to a depen-
dence on initial conditions. Conditions for self–similarity in-
clude the absence of length scales other than that of the mixing
layer thickness,h, as well as sufficiently large Reynolds num-
bers.

The aim of the present work is to use the stretched–vortex mod-

els to simulate a turbulent temporal mixing layer. To encourage
a self–similar flow, the simulation is run at very high Reynolds
numbers, well above those typically attained in laboratoryin-
vestigations or fully–resolved direct numerical simulations. A
passive scalar is introduced in order to test the stretched–vortex
mixing model. The model produces a flow that is approximately
self–similar.

Simulation details

In this simulation, the fluid is assumed to be of uniform density.
The equations of motion are obtained by applying a spatial filter
to the mass, scalar–transport, and momentum equations. The
filtered equations are
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wherexi andui are the components of the Eulerian position and
velocity vectors, respectively,Y is the scalar concentration,D
its diffusivity, p is the pressure,τi j is the viscous stress tensor,
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and filtered variables are defined by

f ≡
Z

G(x−x′) f (x′)dx′, (3)

whereG is a filter kernel whose form is implied by the subgrid
model. The additional terms,

q j ≡ u jY −u jY , (4)

and
Ti j ≡ uiu j −uiu j, (5)

are the subgrid–scale scalar flux and subgrid–scale stress,re-
spectively.

Equations (1b) and (1c) are closed using the stretched–vortex
subgrid–scale stress model of Misra & Pullin [7] and the
stretched–vortex subgrid–scale scalar flux model of Pullin[8].
For a single subgrid vortex, the subgrid–scale stress is

Ti j = K(δi j −eie j) (6)

whereK is the subgrid kinetic energy per unit mass, andei are
the components of the unit vector in the direction of the subgrid
vortex axis. The subgrid–scale scalar flux is

q j =−
1
2

∆K1/2(δi j −eie j)
∂Y
∂xi

(7)
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where∆ is the local mesh size.

The subgrid kinetic energy is estimated using the spectrum of
the Lundgren spiral vortex, that is,

K =
Z ∞

kc

K0ε2/3k−5/3 exp[−2k2ν/(3|a|)]dk, (8)

wherek is the wavenumber,kc = π/∆ is the cutoff wavenumber,
K0 the Kolmogorov prefactor,ε the local cell–averaged dissipa-
tion rate,ν the kinematic viscosity, and|a| the axial strain along
the subgrid vortex axis [12]. The groupK0ε2/3 is estimated
from the local resolved second–order velocity structure func-
tion using spherical averages [5, 12]. The proportion of subgrid
vortices aligned with the principal extensional eigenvector of
the resolved rate–of–strain tensor,Si j, and the resolved vortic-
ity vector,ω, is given byλ and(1−λ), respectively, where

λ = λ3/(λ3 + ||ω||) (9)

andλ3 is the principal extensional eigenvalue (model 1b [7]).

Equation (1) is solved in a cubic domain with side lengthL.
Periodic boundary conditions are applied in the transverseho-
mogeneous directions,x1 and x3. The top and the bottom of
the box are modelled as impermeable walls moving in opposite
directions, that is,u1/∆U = ±1/2 andu2 = u3 = 0, where∆U
is the velocity difference between the upper and lower streams.
These boundary conditions are only appropriate if the thickness
of the mixing zone is much less than the size of the domain.
A Fourier spectral collocation scheme is used in the homoge-
neous directions,x1 and x3. An eighth–order compact finite–
difference scheme [4] is used in the inhomogeneous direction,
x2. The grid spacing,∆, is identical in each direction. The grid
size is 2563. Aliasing is minimized by calculating the nonlinear
convective terms in skew–symmetric form [2]. A third–order
variable–time–step Adams–Bashforth–Moulton scheme is used
for temporal integration. The code was validated by comput-
ing solutions of the incompressible unsteady Stuart vortex(with
the subgrid–scale model turned off and with suitably modified
boundary conditions) [11].

The initial mean velocity profile is

u
∆U

=
1
2

tanh
( y

δ

)

, (10)

whereδ is set to approximately 3.2∆. This is perturbed by a
random, three–dimensional, divergence–free disturbancewhose
energy spectrum peaks atkℓ = 116, whereℓ = L/2π and the
maximum resolvable wavenumber iskcℓ = 128. The scalar is
initialised with the same function as the mean velocity (10),
but linearly shifted to obtain 0≤ Y ≤ 1. The scalar field
is not perturbed. For this simulation, the Reynolds number,
ReL ≡ ∆UL/ν, is 108 and the Schmidt number,Sc ≡ ν/D, is
1.

Results and discussion

Visualizations of the scalar field are shown in figure 1 at three
selected times. Early in the simulation, large–scale coherent
spanwise structures emerge. The wavelength of these struc-
tures is much larger than those that dominate the initial pertur-
bation field. Inviscid linear stability theory predicts that, for a
hyperbolic–tangent velocity profile, the wavenumber,α, of the
most unstable normal modes occur whenαδ is about 0.44 [6].
For the present simulation, this gives about 5.6 structureswithin
the domain, which is quite close to the number observed (about
5). This suggests that initial growth is dominated by inviscid
linear instability. The initial growth rate is, however, signifi-
cantly less than that predicted by linear stability theory,showing

(a)

(b)

(c)

Figure 1: Visualization of the scalar field in thex1 (horizontal)
andx2 (vertical) plane at the non–dimensional times (a)τ = 208,
(b) 320, and (c) 640. Black corresponds toY = 0 and white to
Y = 1. Only 60% of the vertical extent of the flow domain is
shown.

that the model is already exerting an influence on the flow. The
later frames show that this initial regularity does not persist, at
least not to the same degree.

In the absence of length scales other than the mixing layer thick-
ness, and at sufficiently high Reynolds numbers, dimensional
analysis predicts that the mixing layer thickness grows linearly
in time. Mixing–layer thickness is measured in terms of the
momentum thickness defined by

hm ≡
Z ∞

−∞

(

1
4
−
〈u1〉

∆U2

)

dx2, (11)

where the angled-brackets denote the plane–average

〈 f 〉(x2) =
1

L2

ZZ

L2
f (x1,x3)dx1dx3. (12)

The initial thickness ish0 = δ/2. This is used to define the
nondimensional timeτ ≡ ∆Ut/h0. Figure 2 shows that the
momentum thickness grows linearly with time afterτ ≈ 200.
Note that the first frame shown in figure 1 corresponds to
the beginning of the linear growth phase. Other measures of
the mixing–zone thickness, including the vorticity thickness,
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Figure 2: Growth of the normalized momentum thickness ver-
sus non–dimensional time. The slope of the bold line is 0.02.

hω ≡ ∆U/(∂u1/∂x2)max, and the scalar mixing–zone width,
hY ≡ h0.99− h0.01, where〈Y 〉(h0.99) = 0.99 and〈Y 〉(h0.01) =
0.01, also grow linearly, albeit with greater variation. The non–
dimensional linear growth rater ≡ d(hm/h0)/dτ is approxi-
mately 0.02. This is at the high end of the experimental range
(0.014 to 0.022) quoted by Rogers & Moser [9].

Further evidence of self–similarity is the collapse of the plane–
averaged velocity,〈u1〉, and plane–averaged scalar concentra-
tion, 〈Y 〉, when plotted against the scaled coordinate,x2/hm
(figures 3 and 4, respectively). Although the collapse of theve-
locity profiles is not a sensitive indication of self–similarity [9],
it is nevertheless remarkable that the model produces a mean
velocity profile that is in accord with the mean velocity profiles
measured by Bell & Mehta [1] and the direct numerical sim-
ulation data of Rogers & Moser [9]. Although the profiles of
scalar concentration exhibit a greater degree of variability than
the mean velocity profiles, they are also more clearly distin-
guished from their initial profile.

More sensitive indicators of self–similarity are profiles of the
Reynolds stress tensor in scaled coordinates. These will bepre-
sented in entirety elsewhere, however figure 5 shows the con-
tribution of the resolved field to the plane–averaged Reynolds
shear stress. In general, the profiles of the Reynolds stressten-
sor are considerably more variable than the mean velocity pro-
files, and tend to overpredict the results of Bell & Mehta [1]
and Rogers & Moser [9]. The agreement between the simula-
tion results atτ = 208 and the experimental results appears to
be coincidental, and is not replicated for the other components
of the Reynolds stress tensor.

The integrated subgrid kinetic–energy dissipation rate is

E =

Z ∞

−∞
εdx2, (13)

whereε = 〈Ti jSi j〉 andSi j is the resolved–scale rate–of–strain
tensor. In the present high Reynolds–number simulation, the
subgrid dissipation completely dominates the resolved–scale
dissipation and is a good estimate of the total dissipation.In
a self–similar flow, the integrated dissipation rate is expected to
scale as∆U3. Figure 6 shows the evolution of the scaled inte-
grated dissipation rate. This does not approach a constant value
in the linear growth phase but oscillates between about 2.5 and
3.5.
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Figure 3: Plane–averaged streamwise component of velocityat
τ = 208 (solid), 320 (long–dashed), 480 (dashed), 640 (dot–
dashed), 800 (dotted). Symbols are the experimental data of
Bell & Mehta [1]. The solid grey line is the initial velocity
profile.

In the present simulation, the local Reynolds number,Rem =
∆Uhm/ν, increases from about 106 up to 2×107. This is con-
siderably higher than Reynolds numbers typically attainedin
laboratory experiments or direct numerical simulations (for ex-
ample, the experiments of Bell & Mehta [1] achieveRem ≈
6000, while the direct numerical simulations of Rogers &
Moser [9] achieveRem ≈ 2400). This does not render a com-
parison with these studies meaningless, for if the flow is truly
self–similar, then it should be independent of Reynolds number.
Further simulations are being run to investigate model predic-
tions at different Reynolds numbers.

A large–eddy simulation is freed from the resolution require-
ments dictated by the range of spatial scales generated at high
Reynolds number. However, if the aim of the simulation is to
produce well–converged statistics of a self–similar flow whose
spatial scale grows in time, then there is still a requirement to
encompass a range of scales that span the generations of large–
scale eddies that develop during the simulation. In the present
simulation, only five structures emerged from the initial condi-
tions. This would allow only two ‘pairings’ or generations of
structures to develop before a single structure fills the domain.
It is possible that this is insufficient for the flow to become truly
independent of its initial conditions and achieve a self–similar
state. Furthermore, it is possible that the statistics are not well–
converged. This may explain the highly oscillatory value ofthe
integrated dissipation rate. The number of initial structures can
be increased by decreasing the thickness of the initial profile,
however this is ultimately limited by the need to resolve some
portion of the flow. Further decrease of the initial thickness
requires a finer grid and therefore larger grid sizes. A more ef-
ficient approach to this computational problem may be the use
of adaptive mesh refinement.

One issue that is not evident from the statistics concerns the
pointwise values of the resolved scalar field. Although an un-
filtered scalar field is bounded by its initial maximum and min-
imum values, a filtered scalar field need not. Indeed, in this
simulation it is found that the resolved scalar field,Y , exceeds
its initial bounds in a small proportion of the computational do-
main. For the passive scalar used in this simulation, this appears
to be of little consequence and the scalar excursions are aver-
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Figure 4: Plane–averaged scalar distribution atτ = 208 (solid),
320 (long–dashed), 480 (dashed), 640 (dot–dashed), 800 (dot-
ted). The solid grey line is the initial scalar profile.
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Figure 5: Plane–averaged Reynolds shear stress atτ = 208
(solid), 320 (long–dashed), 480 (dashed), 640 (dot–dashed),
800 (dotted). Symbols are the experimental data of Bell &
Mehta [1].
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Figure 6: Evolution of the scaled integrated dissipation rate.

aged out in the statistics. However, the current code is written
for variable–density incompressible flow, where the density is
an active scalar. In that case, it is essential that the scalar not
attain zero or negative values, as this quickly leads to failure of
the calculation.

Conclusions

A large–eddy simulation of a plane turbulent mixing layer using
the stretched–vortex subgrid stress and mixing models achieved
a final Reynolds number ofRem ≈ 2× 107. The momentum
thickness grows linearly with a non–dimensional growth rate of
about 0.02. The mean velocity and mean scalar concentration
collapse when plotted against scaled coordinates. These obser-
vations are consistent with a flow that is self–similar. However,
the components of the Reynolds stress tensor do not collapse
as well, and tend to overpredict available data. The integrated
dissipation rate does not achieve a stationary value duringthe
simulation.
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