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Abstract 
In the last three decades, the study of turbulence, one of the great 
unsolved problems of classical physics, based on the dynamics of 
vortices and vortex motions has received continuing attention by 
physicists, engineers, and mathematicians. Here the solutions of 
Navier-Stokes (N-S) equations are used to show the dynamical 
behaviour of Lagrangian particles on the invariant plane of 
Velocity Gradient Tensors (VGT) for vortex with unsteady rate 
of strain. The results show that, for particles not too far from the 
vortex centre, the VGT invariant follows trajectories spiralling in 
towards the origin of the invariant plane, and follow a shape 
closely resembling to the conditional average from Direct 
Numerical Simulation of isotropic turbulence. These vortices of 
unsteady strain rates offer an explanation on forward and 
backward energy transfer. 
 
Introduction  
Turbulence is an omnipresent phenomenon of Nature and our 
understanding of it is still limited after more than one hundred 
years of studies. It is accepted that turbulent energy is distributed 
among eddies of various sizes and turbulent flows consist of 
randomly orientated vortices. One mechanism for the generation 
and maintenance of these vortices and their energies is through 
the vortex stretching. In [1], spiral vortices of different stages of 
stretching were used to model the small scale isotropic 
turbulence and a –5/3 law for the energy spectrum was derived in 
the inertial range. From a physical point of view, stretching of 
spiral vortices at high Reynolds numbers offers a simple 
explanation of energy transfer from large scales to small scales 
(forward cascade) with negligible energy dissipation, an 
important characteristics for the inertial range of isotropic 
turbulence [2]. In [3] and [4], randomly stretched Burger and 
spiral vortices were used to calculate the longitudinal structure 
functions, and reasonable agreements with experimental and 
numerical results were found. In [5], higher moments of one-
point velocity derivatives were calculated using stretched spiral 
vortices.  For a review on vortex dynamics in turbulence, see [6]. 
 
In all these studies, the vortices were stretched along the axial 
direction and little consideration was given to unsteady strain 
rates, especially those vortices of negative strain rates 
(compression) in the axial direction. One problem with using 
stretched vortices to model turbulence is that it cannot explain the 
energy transfer from small scales to large scales (backward 
cascade) as the experimental results [7] have shown that 
backward cascade happens very common in turbulent flow field. 
The other problem is that when the dynamics of stretched 
vortices are studied in the VGT invariant plane, only straight 
lines in the second and fourth quadrants can be produced [8]. 
Results in [8] show that different vortex circulations and 
stretching rates only result in changing the slops of the straight 
lines in the invariant plane, not their quadrants. On the other 
hand, DNS results [8] show that a large portion of the data in the 
scattered plot of the VGT invariants falls in the first and third 
quadrants. The results in [8] also show that the time evolution of 
the invariants for conditional Lagrangian samples moves between 
quadrants. 
 

In this paper, the solution of the Navier-Stokes equation for a 
vortex under varying strain rate is discussed first. The trajectories 
of the Lagrangian particles on the invariant plane will then be 
presented.  
 
Vortex with unsteady strain rate 
As pointed in [9], the evolution of the VGT following a fluid 
particle is of primary importance in the understanding of 
kinematics and dynamics of turbulence. Owing to its Galilean 
invariance property, the VGT contains significant fluid 
mechanics information independent of a non-accelerating 
observer. The dynamical behaviour of the VGT is of fundamental 
importance because it governs the mechanism of vortex 
stretching which in turn contributes to the energy cascade process 
in turbulent flows. Here we consider the evolution of the VGT 
invariants from velocity field induced by vortices with unsteady 
strain rates. The vorticity distribution is assumed to have only the 
axial component ),( trω  in the cylindrical coordinate system 
(r, θ, z) and is a function of time t. The velocity field associated 
with this vortex is )0),,(,0( trvw θ=v . The vortex is exposed 
to an external irrotational strain field given by 

))(,0,2/)(( ztartae −=v  and the total velocity field is 
given as 
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Here we have assumed that the strain rate a(t) is a function 
of time. 
 

Lundgren [1] derived from the N-S equations an analytical 
solution for the axial symmetrical vortices with unsteady 
strain rate as 
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where RΓ is Reynolds number and is related to the circulation Γ 
of a vortex by πν4/Γ=ΓR , and ν is the kinematic viscosity 
of the fluid. This solution represents flows in which a balance 
exists between convection, diffusion, and stretching or 
compression of the vortex. For 0.)( >== constta σ ,  the 
vortices become  
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When ∞→t , this tends to the Burger vortex with a 
radius 2/1)/4( σν=Br . 
 
A supervising feature of solution (2) is that the strain rate a(t) can 
be any function of time. To study the dynamical behaviour of the 
vortices with unsteady strain rate, we assume 

)2sin()( ftta πσ=      (4) 
where σ is the magnitude of the external strain rate and f is the 
frequency. This will involve both vortex stretching when a(t) > 0 
and vortex compression when a(t) < 0. In turbulent flow fields of 
high Reynolds number, it is expected that a vortex cannot be 
stretched indefinitely such that high vorticity remains with a 
group of fluid particles all the time. Soon or later, a vortex will 
be compressed so that the particles previously having high 
vorticity will experience a decrease in vorticity. Also, for 
homogeneous isotropic turbulence, the assemble average of the 
strain rates is zero. Thus it is believed that a strain rate such as 
(4) can model more closely the external strain field experienced 
by a vortex than that of a constant stretch rate, and thus the 
dynamics of the vortices can be simulated more closely by using 
(4) than that by using Burger vortices. In calculating the statistics 
of velocity field induced by vortices, constant stain rate may be 
sufficient since in this case only a snapshot of the velocity field is 
needed. At this snapshot, all the turbulent quantities are ‘frozen’. 
However, in order to study the dynamics of velocity field and to 
model the forward and backward energy transfer between 
turbulence scales, unsteady strain field is necessary. The 
tangential velocity field associated with solution (2) is 
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Here we follow Lagrangian particles on the unsteady vortex and 
investigate the evolution of the particles in terms of vorticity and 
invariants of the VGT. The first, second and third invariants of 
the VGT are defined [10] as ,  and 

, respectively, for the VGT 

. For incompressible flows,

iiA AP −= 2/jiijA AAQ −=

3/kjikijA AAAR −=

jiij xuA ∂∂= / 0=AP . As according 

to [10], local flows are represented by points in the (QA, RA)-
plane where the rotation and strain dominated flows are separated 
by zero discriminate curve . The 
local topology of the flows for D > 0 and R

04/27 23 =+= AA RQD
A < 0 is classified as 

stable focus/saddle, for D > 0 and RA > 0 it is unstable 
focus/saddle, for D < 0 and RA > 0 it is unstable 
node/saddle/saddle, and for D < 0 and RA < 0 it is stable 
node/saddle/saddle. For the total velocity field given by (1) and 
(5), these invariants can be expressed as 
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Particle trajectories on the invariant plane 
Figure 1 shows the tangential velocity and axial vorticity 
following a particle at  and 0.1,5 00 == zr 00 =θ  at 0=t  

with 4,100 ==Γ σR  and 5.0=ν , calculated using (2) and (5). 
The radial position of the particle changes with time and was 
determined from dr/dt = ur. The trajectory of the particle follows 
a spiral around the axis of the vortex and moves in the positive z 
direction (because z0 > 0). Because of the axial symmetry, the 
initial position for  and 0z 0θ  can be arbitrary in calculating the 
quantities shown in the following figures. For the given 

conditions for the vortex, the radius of the steady state Burger 
vortex with σ=a  is 2/1=Br . For the strain rate given by 

(4) with σ = 4, this particle oscillates between 4.15 <≤ r  
sinusoidally (results not shown). 

 
 

FIG 1. Axial vorticity and tangential velocity following a particle 
start at 0=r  with 4,100 ==Γ σR , f = 0.5 Hz and 

5.0=ν . 
 

Figure 1 shows that at 0=t , the vorticity at the particle is zero 
and the tangential velocity 0/2 rRv Γ= νθ . This can be 

explained by equations (2) and (5) which show that at 0=t , the 
vorticity is concentrated at  and singular. The tangential 
velocity at  is that induced from a vortex line and thus the 

local flow field is irrotational. This singularity at 

0=r
50 =r

0=t  is not 
because of the unsteady strain rate (4) used. Equation (3) from a 
constant stretch rate also has this singularity. Of course, this 
singular vorticity would not exist in turbulence, at least for finite 
Reynolds numbers. This means that equations (2) and (5) cannot 
be used to model the onset of the Burger vortex. 
 

Figure 1 also shows that the peak vorticity and the tangential 
velocity decrease with time. This is due to the characteristics of 
the stretch ratio S(t) and vortex time T(t) as defined in (2). Figure 
2 shows the variations of S(t) and T(t) with time. It shows that the 
stretch ratio S(t) oscillates but the vortex time T(t) increases 
monotonically with no limit. Because of this, both the peak 
vorticity and tangential velocity decrease with time, and 
eventually approach zeros. This decrease of peak values for 
vorticity and tangential velocity with time is due to the 
continuous diffusion of vorticity away from the vortex centre 
with increasing vortex time T(t). Another consequence of the 
monotonically increasing vortex time T(t) and oscillating S(t) is 
that the instantaneous vortex radius  as 
shown in figure 3 in general increases but oscillates with time. 
Figure 3 shows that as time increases, the region where the 
vorticity exists all the time increases as well. This spread of 
vorticity is due to the viscous diffusion. 

2/1))(/)(4( tStTrs ν=

 
Figure 4 shows the evolution of the given particle at 

0.1,5 00 == zr  and 00 =θ  at 0=t  with 

4,100 ==Γ σR , f = 0.5 Hz, and 5.0=ν  in the invariant 
(QA, RA)-plane. The second invariant QA has been normalized by 
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4/2
0 TA RQ σ=  and the third invariant RA has been 

normalized by . In figure 4, only the results 
from  have been shown because of the singularity 
problem at t = 0 as discussed above. Also shown in the figure is 
the discriminate curve D = 0. It is found that at t < 2, the 
trajectory is below the D = 0. Equation (6) and the results in 
figure 1 show that the invariants are dominated by the flow field 
induced by the vortex as soon as the vorticity is above some 
threshold because of the relative large values of tangential 
velocity and vorticity in comparison with the strain rate.  

4/3
0 Γ= RR A σ

604 ≤≤ t

 

 
Figure 2 Stretch ratio S(t) and vortex time T(t) following a 
particle initially at with , f = 0.5 Hz 
and 

5=r 4,100 ==Γ σR
5.0=ν . 

 
Figure 3 The instantaneous radius of the vortex with unsteady 
stain rate following a particle initially at 5=r with 

, f = 0.5 Hz and 4,100 ==Γ σR 5.0=ν .. 
 

It is found that for all the particles around the vortex, the 
trajectories of the invariants are similar to that shown in figure 4, 
each with a different time of moving above the D = 0 line. This 
trajectory shows two remarkable characteristics, i.e. it moves in 
the (QA, RA)-plane in a clockwise fashion and it spirals towards 
the origin of the plane. These characteristics are the same as 
those shown by the conditional mean trajectories on the (QA, RA)-
plane given in [10] based on the DNS data of forced 
homogeneous isotropic turbulence. As the trajectory moves 

towards the origin, the velocity gradient experienced by the 
particle decreases. The reason for this is that the peak vorticity 
and tangential velocity are decreasing with time as the results in 
figure 1 show.   
 
Equation (6) shows that RA = 0 at a(t) = 0. A close look at the 
results shows that the results for RA < 0 corresponds to positive 
strain rate a(t) > 0 while those of RA > 0 corresponds to negative 
strain rate a(t) < 0.  Because it is generally believed that 
stretching vortex results in the energy transfer from large scales 
to small scales (forward cascade) and compressing vortex results 
in the energy transfer from small scales to large scales (backward 
cascade), then it can be concluded that the points on the left half 
of the (QA, RA)-plane would involve forward cascade and those 
on the right half of the (QA, RA)-plane would involve backward 
cascade. Using (6), it can also be easily shown that at any given 
time 

AA QtataR )()( 3 −−=     (7) 
This means that when a(t) = const. > 0, the trajectory would 
follow a straight line with a negative slop as the results in [8] 
show. Thus the spiral-in of the invariant trajectory shown in 
figure 3 is due to the variation of a strain rate a(t) with time. 
The results in Figure 3 should be compared with the solutions 
from the restricted Euler equations for the invariants [11]-[13], 
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In (8), the pressure Hessian and the viscous term 
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have been neglected. Figure 5 shows the solution of equation (8) 
in the invariant plane. In figure 5 the solution for the restricted 
Euler equation ‘flows’ from the left half of the plane to the right 
half of the plane and all solutions approach D = 0 as ∞→t  
rather than spiral in towards the origin of the invariant plane.   
 
The reason for this difference in the invariant trajectory topology 
is that the results in figure 4 are based on the analytical solution 
of the N-S equations while those in figure 5 are based on the 
restricted Euler equations. Because of this, the effect of the 
pressure Hessian and the viscous term as given in (9) has not 
been neglected for the results in figure 4. This shows that 
correctly modelling the term in (9) is crucial in determining the 
invariant dynamics of the VGT. Numerical results in [14] show 
that the neglected pressure Hessian and the viscous term are at 
least as large as that due to convection.  
 
Although isotropic turbulence consists of vortex of different 
scales and direction, each individual vortex may not last as long 
as the results given in figure 4. However, the results in figure 4 
can be considered as a representative and ensemble of vortex at 
different stages of stretching and compressing from different 
vortices at different orientations. The results in figure 4 shows 
that this representative vortex can be used to study the statistics 
of turbulence. The strain rate given in (4) is of course too simple 
for a real turbulence. More complex forms of unsteady strain rate 
can be used to model the dynamic behaviour of the VGT 
invariants and make them to follow the DNS data more closely. 
The present results provide a starting point in building a realistic 
turbulence model. 
 
Conclusions 
The results presented here use solutions from the N-S equations 
and offer an explanation on the energy transfer mechanism 
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through both forward and backward cascades. The traditional 
understanding that energy transfer from large scale to small scale 
turbulence by a forward cascade process can only explain the 
energy transfer on average. The actual energy transfer 
mechanism involves forward and backward cascades. Any 
turbulence model and theory fail to include backward cascade 
cannot be expected to fully explain the nature of turbulence. 

 

 

 

 
Figure 5 Solution to the Restricted Euler equation. 
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