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Abstract

This paper is concerned with the application of integrated
radial-basis-function networks (IRBFNs) for the simulation of
natural convection in concentric and eccentric annuli. Important
features of the present technique include: (i) Taking a stream
function - temperature formulation as the governing equations;
(ii) Employing a Cartesian grid to discretize the problem do-
main; (iii) Using one-dimensional RBF approximations to rep-
resent the approximate solution; and (iv) Constructing the ap-
proximations through integration. These features result in an
efficient numerical scheme as (i) the number of the governing
differential equations is reduced from 4 to 2, (ii) the preprocess-
ing is simple, (iii) the associated matrices have condition num-
bers in 2-norm that are much lower than those yielded through
conventional RBF techniques, and (iv) the reduction of conver-
gence rate caused by differentiation is avoided. A wide range of
the Rayleigh number is considered. Results obtained are com-
pared well with available numerical data in literature.
Keywords: Natural convection; Cartesian grid method; Irregu-
lar domain; Integrated radial basis function networks

Introduction

Natural convection is an important phenomenon in many ap-
plications in engineering and science such as meteorology, nu-
clear reactors and solar energy systems. The problem has thus
been extensively studied by both experimental and theoretical
approaches. The motion of a fluid is caused by the combination
of density variations and gravity. Natural convection is gov-
erned by the coupling of momentum equation (velocity field)
and energy equation (temperature field). Numerical solutions
can be achieved by means of discretisation, followed by solu-
tions of the resultant algebraic equations. Results have been
reported using different discretisation techniques such as finite-
difference methods (FDMs) (e.g. [1,10]), finite-element meth-
ods (FEMs) (e.g. [17,22]), finite-volume methods (FVMs) (e.g.
[4,6]), boundary-element methods (BEMs) (e.g. [5,9,20]) and
spectral methods (e.g. [11,24]).

RBFNs have been proved to be a universal approximator. Over
the last fifteen years, the networks have been developed to solve
different types of differential problems encountered in applied
mathematics, science and engineering (e.g. [3,7,8,13,23,27]).
RBFN methods are truly meshless, extremely easy to imple-
ment and capable of achieving a high level of accuracy using
relatively small numbers of nodes. However, the RBF sys-
tem matrix is fully populated and its condition number grows
rapidly as the number of nodes is increased. One way to over-
come these problems is to approximate the solution locally. Re-
cently, one-dimensional (1D) IRBFN approximation schemes
have been proposed in [16]. The “local” 1D-IRBFN approxi-
mations at a grid node involve only nodal points that lie on the
grid lines intersected at that point rather than the whole set of
nodes. Moreover, the construction of the RBF approximations
is based on integration, which avoids the reduction of conver-
gence rate caused by differentiation. Numerical results have
indicated that this approach allows larger numbers of nodes to

be employed and is able to maintain a fast rate of convergence
with grid refinement.

In this paper, we present the 1D-IRBFN technique for the sim-
ulation of buoyancy-driven flow governed by nonlinear par-
tial differential equations (PDEs) and defined in concentric and
eccentric annuli. For conventional FDMs and pseudospectral
techniques, coordinate transformations are required to convert
non-rectangular domains into rectangular ones [18,26]. The re-
lationships between the physical and computational coordinates
are given by a set of algebraic equations or a set of PDEs, de-
pending on the level of complexity of the geometry. Such trans-
formation processes are, in general, complicated. By contrast,
the present method is able to retain the PDEs in their Cartesian
forms, and thus work in a similar fashion for different shapes
of annuli. In addition, the formulation of stream function and
temperature is employed, which reduces the number of depen-
dent variables from four (two velocity components, pressure
and temperature) to two (stream function and temperature). An
outline of the paper is as follows. First, a brief review of the
governing equations is given. Then, the present 1D-IRBFN
technique is described, followed by numerical results for nat-
ural convection in circular-circular and square-circular annuli.
Finally, some remarks conclude the paper.

Governing Equations

Using the Boussinesq approximation, the 2D dimensionless
forms of the PDEs governing buoyancy-driven flows can be
written as (e.g. [19])

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

=−∂p
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Ra
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∂y2

)
, (2)

∂v
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∂y
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√
Pr
Ra

(
∂2v

∂x2 +
∂2v
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∂T
∂t

+u
∂T
∂x

+ v
∂T
∂y

=
1√

RaPr

(
∂2T

∂x2 +
∂2T

∂y2

)
, (4)

whereu andv are the velocity components,p the dynamic pres-
sure,T the temperature, andPr andRa the Prandtl and Rayleigh
numbers defined asPr = ν/α andRa = βg∆T L3/αν, respec-
tively in which ν is the kinematic viscosity,α the thermal dif-
fusivity, β the thermal expansion coefficient,g the gravity, and
L and∆T the characteristic length and temperature difference,
respectively. In this dimensionless scheme, the velocity scale is
taken asU =

√
gLβ∆T for the purpose of balancing the buoy-

ancy and inertial forces.

By writing the velocity components in terms of a stream func-
tion ψ defined as

u =
∂ψ
∂y

, v =−∂ψ
∂x

,

the continuity equation is satisfied identically and the momen-
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tum equations reduce to

∂
∂t

(
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∂y2

)
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∂ψ
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∂3ψ
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∂3ψ
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∂x

(
∂3ψ
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∂3ψ
∂y3

)

=

√
Pr
Ra

(
∂4ψ
∂x4 +2

∂4ψ
∂x2∂y2 +

∂4ψ
∂y4

)
− ∂T

∂x
. (5)

It can be seen that one can replace the system of four equations
(1)-(4) by a set of two equations (4) and (5). The latter will be
employed in the present work.

The Present 1D-IRBFN Technique

One-dimensional IRBFNs

It is known that RBFNs have the property of universal approx-
imation. The RBFN allows the conversion of a function to be
approximated from a low-dimensional space (e.g., 1D here) to
a high-dimensional space in which the function is expressed as
a linear combination of RBFs

f (x) =
m

∑
i=1

wigi(x), (6)

wherem is the number of RBFs,{gi(x)}m
i=1 the set of RBFs, and

{wi}m
i=1 the set of weights to be found. The present technique

implements the multiquadric (MQ) function whose form is

gi(x) =
√

(x− ci)2 +a2
i , (7)

whereci and ai are the centre and the width of theith basis
function.

In the traditional/direct approach, a functionf is approximated
by an RBFN, followed by successive differentiations to obtain
approximate expressions for its derivatives. There is a reduction
in convergence rate for derivative functions and this reduction
is an increasing function of derivative order [12].

Mai-Duy and Tran-Cong [14,15] have proposed the use of inte-
gration to construct the RBF approximations. A derivative off
is decomposed into RBFs, and lower-order derivatives and the
function itself are then obtained through integration

dp f (x)
dxp =

m

∑
i=0

wigi(x) =
m

∑
i=0

wiI
(p)
i (x), (8)

dp−1 f (x)

dxp−1 =
m

∑
k=0

wiI
(p−1)
i (x)+ c1, (9)

dp−2 f (x)

dxp−2 =
m

∑
k=0

wiI
(p−2)
i (x)+ c1x+ c2, (10)

· · · · · · · · · · · · · · ·
d f (x)

dx
=

m

∑
k=0

wiI
(1)
i (x)+ c1

xp−2

(p−2)!
+ c2

xp−3

(p−3)!
+ · · ·+

cp−2x+ cp−1, (11)

f (x) =
m

∑
k=0

wiI
(0)
i (x)+ c1

xp−1

(p−1)!
+ c2

xp−2

(p−2)!
+ · · ·+

cp−1x+ cp, (12)

where I(p−1)
i (x) =

R
I(p)
i (x)dx, I(p−2)

i (x) =R
I(p−1)
i (x)dx, · · · , I(0)

i (x) =
R

I(1)
i (x)dx, and c1,c2, · · · ,cp

are the constants of integration. Numerical results have shown
that the integral approach significantly improves the quality of
the approximation of derivative functions over conventional

differential approaches. The IRBF approximation scheme is
said to be ofpth-order, denoted by IRBFN-p, if the pth-order
derivative is taken as the staring point.

Simulation of Buoyancy-driven Flow

Figure 1: A circular-circular annulus: Computational domain
and discretisations: 11×11 (left) and 61×61 (right).

Consider the process of natural convection between two cylin-
ders, one heated and the other cooled (e.g. Figure 1). The
problem domain is embedded in a Cartesian grid with a grid
spacingh. Grid points outside the domain (external points) to-
gether with internal points that fall very close–within a distance
of h/8–to the boundary are removed. The remaining grid points
are taken to be the interior nodes. The boundary nodes consist
of the grid points lying on the boundaries, and points generated
by the intersection of the grid lines with the boundaries.

Along each grid line, 1D-IRBFNs are employed to approximate
the solutions and their relevant derivatives. In what follows, the
proposed method is described in detail for the energy equation
(4) and the momentum equation (5). Special attention is given
to the implementation of boundary conditions.

IRBFN Discretisation of The Energy Equation

The energy equation involves the following linear second-order
differential operator

L2 =
∂2

∂x2 +
∂2

∂y2 . (13)

As presented earlier, an IRBFN-p scheme permits the approxi-
mation of a function and its derivatives of orders up top. To use
integrated basis functions only, one needs to employ IRBFNs
of at least second order. A line in the grid contains two sets of
points (Figure 2). The first set consists of the interior points that
are also the grid nodes (regular nodes). The values of the tem-
perature at the interior points are unknown. The second set is
formed from the boundary nodes that do not generally coincide
with the grid nodes (irregular nodes). At the boundary nodes,
the values of the temperature are given.

For classical FDMs, the irregular nodes require changes of∆x
and∆y in the finite-difference formulas, and such changes de-
teriorate the order of truncation error [22]. Unlike FD and also
spectral approximation schemes, IRBFNs have the capability to
handle unstructured points with high accuracy. As a result, the
present technique does not require any special treatments for ir-
regular boundary points. The boundary conditions are imposed
through the process of converting the network-weight space into
the physical space (conversion process).

Consider a horizontal grid line (Figure 2). An important feature
of the present technique is that, along the grid line, both inte-
rior points{xi}q

i=1 and boundary points{xbi}2
i=1 are taken to

be the centres of the network. We employ 1D-IRBFN-2s here
to discretize the temperature fieldT . The conversion system is
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x1 x2 xq

xb1 xb2

Figure 2: Points on a grid line consist of interior pointsxi (◦)
and boundary pointsxbi (2).

constructed as follows
(

T̂
T̂b

)
= Ĉ ŵ, (14)

where

T̂ =
(
T1,T2, · · · ,Tq

)T
,

T̂b = (Tb1,Tb2)
T ,

ŵ = (w1,w2, · · · ,wm,c1,c2)
T ,

Ĉ =




I(0)
1 (x1) · · · I(0)

m (x1) x1 1

I(0)
1 (x2) · · · I(0)

m (x2) x2 1
· · · · · · · · · · · · · · ·

I(0)
1 (xq) · · · I(0)

m (xq) xq 1

I(0)
1 (xb1) · · · I(0)

m (xb1) xb1 1

I(0)
1 (xb2) · · · I(0)

m (xb2) xb2 1




,

andm = q+2.

The obtained system (14) for the unknown vector of network
weights can be solved using the singular value decomposition
technique

ŵ = Ĉ
−1

(
T̂
T̂b

)
. (15)

Taking (15) into account, the values of the first and second
derivatives ofT at the interior points are computed by




∂T1
∂x
∂T2
∂x
...

∂Tq

∂x




= Î
(1)
[2]

Ĉ
−1

(
T̂
T̂b

)
, (16)

and 


∂2T1
∂x2

∂2T2
∂x2

...
∂2Tq

∂x2




= Î
(2)
[2]

Ĉ
−1

(
T̂
T̂b

)
, (17)

where

Î
(1)
[2]

=




I(1)
1 (x1) · · · I(1)

m (x1) 1 0

I(1)
1 (x2) · · · I(1)

m (x2) 1 0
· · · · · · · · · · · · · · ·

I(1)
1 (xq) · · · I(1)

m (xq) 1 0


 ,

and

Î
(2)
[2]

=




I(2)
1 (x1) · · · I(2)

m (x1) 0 0

I(2)
1 (x2) · · · I(2)

m (x2) 0 0
· · · · · · · · · · · · · · ·

I(2)
1 (xq) · · · I(2)

m (xq) 0 0


 .

Expressions (16) and (17) can be rewritten in compact forms

∂̂T
∂x

= D̂1xT̂ + k̂1x, (18)

and
∂̂2T

∂x2 = D̂2xT̂ + k̂2x, (19)

wherek̂1x andk̂2x are the vectors of known quantities related to
boundary conditions.

It can be seen from (18) and (19) that the IRBFN approxima-
tions of ∂T/∂x and∂2T/∂x2 at the interior points include in-
formation about the inner and outer boundaries (locations and
boundary values). Thus it remains only to force these approxi-
mations to satisfy the governing equation.

The incorporation of the boundary points into the set of centres
has several advantages:

• It allows the two sets of centres and collocation points to

be the same, i.e.{ci}m
i=1≡

{
{xi}q

i=1∪{xbi}2
i=1

}
. Numer-

ical investigations [16,23] have indicated that, when these
two sets coincide, the RBF approximation scheme tends
to result in the most accurate approximate solution.

• It allows the use of IRBFNs with a fixed order (IRBFN-2),
regardless of the shape of the domain.

In the same manner, one can obtain the IRBF expressions for
∂T/∂y and∂2T/∂y2 at the interior points along a vertical line.

As with FDMs, FVMs, BEMs and FEMs, the IRBF approxi-
mations will be gathered together to form the global matrices
for the discretisation of the PDE. By collocating the govern-
ing equation at the interior points, a square system of algebraic
equations is obtained, which is solved for the approximate tem-
perature at the interior points.

IRBFN Discretisation of The Momentum Equation

The momentum equation involves the following linear fourth-
order differential operator

L4 =
∂4

∂x4 +2
∂4

∂x2∂y2 +
∂4

∂y4 . (20)

At each boundary node, the solution is required to satisfy two
prescribed values,ψ and ∂ψ/∂n. It is straightforward to ob-
tain the values of∂ψ/∂x and∂ψ/∂y at the boundary nodes from
the prescribed conditions. The double boundary conditions are
implemented through the conversion process of the network-
weight space into the physical space.

Along each grid line, the set of centres also consists of the in-
terior points and the boundary points. The addition of extra
equations to the conversion system for the purpose of represent-
ing derivative boundary conditions is offset by the generation of
additional unknowns of the integral collocation approach. Con-
sider a horizontal grid line (Figure 2). The present work em-
ploys 1D-IRBFN-4s to approximate the variableψ. The con-
version system is given by




ψ̂
ψ̂b
∂̂ψb
∂x


 = Ĉ ŵ, (21)

where

ψ̂ =
(
ψ1,ψ2, · · · ,ψq

)T
,

ψ̂b = (ψb1,ψb2)
T ,

∂ψ̂b

∂x
=

(
∂ψb1

∂x
,

∂ψb2

∂x

)T

,

ŵ = (w1,w2, · · · ,wm,c1,c2,c3,c4)
T ,
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Ĉ =




I(0)
1 (x1) · · · I(0)

m (x1) x3
1/6 x2

1/2 x1 1

I(0)
1 (x2) · · · I(0)

m (x2) x3
2/6 x2

2/2 x2 1
· · · · · · · · · · · · · · ·

I(0)
1 (xq) · · · I(0)

m (xq) x3
q/6 x2

q/2 xq 1

I(0)
1 (xb1) · · · I(0)

m (xb1) x3
b1/6 x2

b1/2 xb1 1

I(0)
1 (xb2) · · · I(0)

m (xb2) x3
b2/6 x2

b2/2 xb2 1

I(1)
1 (xb1) · · · I(1)

m (xb1) x2
b1/2 xb1 1 0

I(1)
1 (xb2) · · · I(1)

m (xb2) x2
b2/2 xb2 1 0




,

and m = q + 2. The values of thelth-order derivative (l =
{1,2,3,4}) of ψ at the interior points on the line are evaluated
as

∂̂4ψ
∂x4 = Î

(4)
[4]

Ĉ
−1




ψ̂
ψ̂b
∂̂ψb
∂x


 , (22)

∂̂3ψ
∂x3 = Î

(3)
[4]

Ĉ
−1




ψ̂
ψ̂b
∂̂ψb
∂x


 , (23)

∂̂2ψ
∂x2 = Î

(2)
[4]

Ĉ
−1




ψ̂
ψ̂b
∂̂ψb
∂x


 , (24)

and

∂̂1ψ
∂x1 = Î

(1)
[4]

Ĉ
−1




ψ̂
ψ̂b
∂̂ψb
∂x


 , (25)

where

Î
(4)
[4]

=




I(4)
1 (x1) · · · I(4)

m (x1) 0 0 0 0

I(4)
1 (x2) · · · I(4)

m (x2) 0 0 0 0
· · · · · · · · · · · · · · ·

I(4)
1 (xq) · · · I(4)

m (xq) 0 0 0 0


 ,

Î
(3)
[4]

=




I(3)
1 (x1) · · · I(3)

m (x1) 1 0 0 0

I(3)
1 (x2) · · · I(3)

m (x2) 1 0 0 0
· · · · · · · · · · · · · · ·

I(3)
1 (xq) · · · I(3)

m (xq) 1 0 0 0


 ,

Î
(2)
[4]

=




I(2)
1 (x1) · · · I(2)

m (x1) x1 1 0 0

I(2)
1 (x2) · · · I(2)

m (x2) x2 1 0 0
· · · · · · · · · · · · · · ·

I(2)
1 (xq) · · · I(2)

m (xq) xq 1 0 0


 ,

and

Î
(1)
[4]

=




I(1)
1 (x1) · · · I(1)

m (x1) x2
1/2 x1 1 0

I(1)
1 (x2) · · · I(1)

m (x2) x2
2/2 x2 1 0

· · · · · · · · · · · · · · ·
I(1)
1 (xq) · · · I(1)

m (xq) x2
q/2 xq 1 0


 .

Expressions (22)-(25) can reduce to

∂̂lψ
∂xl = D̂lxψ̂+ k̂lx, (26)

wherek̂lx are the vectors of known quantities related to bound-
ary conditions. Since the discretisation used has a structured
form, the process of joining “local” 1D-IRBF approximations
together (assemblage process) is quite straightforward. For a
special case of rectangular domain, the IRBF approximations

over a 2D domain can simply be constructed using the tensor
direct product.

The fourth- and also third-order mixed derivatives are computed
using the following relations

∂4ψ
∂2x∂2y

=
1
2

[
∂2

∂x2

(
∂2ψ
∂y2

)
+

∂2

∂y2

(
∂2ψ
∂x2

)]
, (27)

∂3ψ
∂2x∂y

=
∂2

∂x2

(
∂ψ
∂y

)
, (28)

∂3ψ
∂x∂y2 =

∂2

∂y2

(
∂ψ
∂x

)
. (29)

Expressions (27)-(29) reduce the computation of mixed deriva-
tives to that of lower-order pure derivatives for which IRBFNs
involve integration with respect tox or y only. The ad-
ditional work here is the computation of∂2(F)/∂x2 and
∂2(F)/∂y2 where F is a derivative function ofψ (i.e.
∂2ψ/∂y2,∂2ψ/∂x2,∂ψ/∂y and∂ψ/∂x). It can be seen that the
discretisation of (5) requires the values of the mixed derivatives
at the interior points. IRBFN-2s can be employed here to con-
struct the approximations for∂2(F)/∂x2 and∂2(F)/∂y2. Both
sets of centres and collocation points of these second-order net-
works consist of the interior nodes only. The IRBF expressions
for derivatives are now written in terms of the values ofψ at
the interior points, and they already satisfy the boundary con-
ditions. These nodal variable values are determined by forcing
the approximate solution to satisfy the momentum equation at
the interior points. Like the energy equation, the resultant sys-
tem of algebraic equations here is of sizenip×nip, wherenip is
the number of interior points of the domain.

Solution Procedure

The energy and momentum equations must be solved simulta-
neously to find the values of the temperature and stream func-
tion at discrete points within the domain. Because of the pres-
ence of convective terms in the governing equations, the ob-
tained algebraic equations for the discrete solution are nonlin-
ear. In this paper, a time dependent decoupled approach is em-
ployed to handle this nonlinearity. The advantage of this ap-
proach is that it allows the breakdown of the problem into the
solution of the energy equation and the solution of the momen-
tum equation (two smaller subproblems at each iteration).

The nonlinear equation set is solved in a marching manner.

1. Guess initial values ofT,ψ and their first-order spatial
derivatives at timet = 0.

2. Discretize the governing equations in time using a first-
order accurate finite-difference scheme, where the diffu-
sive and convective terms are treated implicitly and ex-
plicitly, respectively.

3. Discretize the governing equations in space using 1D-
IRBF schemes:
Solve the energy equation (4) forT , and
Solve the momentum equation (5) forψ.
The two equations are solved separately in order to keep
matrix sizes to a minimum.

4. Check to see whether the solution has reached a steady
state

CM =

√
∑

nip

i=1

(
ψ(k)

i −ψ(k−1)
i

)2

√
∑

nip

i=1

(
ψ(k)

i

)2
< ε, (30)
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wherek is the time level andε is the tolerance.

5. If it is not satisfied, advance time step and repeat from step
2. Otherwise, stop the computation and output the results.

Numerical Results

The present method is applied to the simulation of buoyancy-
driven flow in concentric and eccentric annuli. A wide range
of the Rayleigh number is considered. The computed solution
at the lower and nearest value ofRa is taken to be the initial
solution. The MQ-RBF width is simply chosen to be the grid
sizeh.

Natural Convection in A Circular Annulus

Consider the natural convection between two concentric cylin-
ders which are separated by a distance L, the inner cylinder
heated and the outer cylinder cooled (Figure 1). A comprehen-
sive review of this problem can be found in [10]. Most cases
have been reported withPr = 0.7 andL/Di = 0.8, in which
Di is the diameter of the inner cylinder. These conditions are
also employed in the present work. Kuehn and Goldstein [10]
have also reported numerical results by FDM forRa = 102 to
Ra = 7×104. Using the differential quadrature method (DQM),
Shu [24] has provided very accurate solutions for values of the
Rayleigh number in the range of 102 to 5×104.

One typical quantity associated with this type of flow is the av-
erage equivalent conductivity denoted byk̄eq. This quantity is
defined as ([10,24])

k̄eq =
− ln(Do/Di)

2π

I ∂T
∂n

ds (31)

in which Do is the diameter of the outer cylinder.
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Figure 3: Iterative convergence. Time steps used are 0.5 for
Ra = {102,103,3×103}, 0.1 forRa = {6×103,104}, and 0.05
for Ra = {5× 104,7× 104}. The values of CM become less
than 10−12 when the numbers of iterations reach 58, 154, 224,
1276, 1541, 5711 and 5867 forRa = {102,103,3× 103,6×
103,104,5×104,7×104}, respectively.

The stream function and its normal derivative are set to zero
along the inner and outer cylinders. The temperature is held
at T = 1 at the inner cylinder andT = 0 at the outer cylin-
der. We employ a number of uniform Cartesian grids, namely
11×11,21×21, · · · ,61×61, to study the behaviour of grid con-
vergence of the present method. The convergence of the itera-
tive procedure with respect to time step is shown in Figure 3.

Figure 4: An eccentric square-circular annulus: Computational
domain and discretisation

The condition numbers of matrices associated with harmonic
(13) and biharmonic (20) operators in the governing equations
(4) and (5) are reported in Table 1.

Grid cond(L2T ) cond(L4ψ)
11×11 1.3×101 7.4×101

21×21 1.2×102 5.0×103

31×31 3.3×102 3.3×104

41×41 5.1×102 7.9×104

51×51 7.5×102 1.6×105

61×61 1.0×103 3.2×105

Table 1: Circular cylinders: Condition numbers of matrices as-
sociated with harmonic and biharmonic operators.

Results concerninḡkeq together with those of Kuehn and Gold-
stein [10] and of Shu [24] forRa = {103,6×103,5×104,7×
104} are presented in Tables 2-5. It can be seen that there is a
good agreement between these numerical solutions. For each
Rayleigh number, the convergence of the average equivalent
conductivity with grid refinement is fast.

Also, we consider eccentric circular-circular annuli, where the
centre of an inner cylinder lies on the vertical symmetrical axis
of an outer cylinder. Different amounts of eccentricity (e),
namely−0.95,−0.75,−0.5,−0.25,0.25,0.5,0.75 and 0.95, are
employed. Since the flow is symmetric, the stream function on
the outer and inner cylinders have the same value and they can
be set to zeros. Results concerningψmax together with those
of Shu and Zhu [25] forRa = 104 are presented in Table 6. It
can be seen that both numerical results are in good agreement.
Figure 5 shows the streamlines and isotherms of the flow for
Ra = 104 using a grid of 41×41. Each plot contains 21 contour
lines whose levels vary linearly from the minimum to maximum
values. The plots look reasonable when compared with those of
the DQM method.

663



Grid Outer cylinder,keqo Inner cylinder,keqi
11×11 1.133 1.046
21×21 1.072 1.069
31×31 1.078 1.077
41×41 1.080 1.079
51×51 1.081 1.080

FDM [10] 1.084 1.081
DQM [24] 1.082 1.082

Table 2: Circular cylinders: Convergence of computed average
equivalent conductivities with grid refinement forRa = 103.

Grid Outer cylinder,keqo Inner cylinder,keqi
31×31 1.698 1.702
41×41 1.704 1.705
51×51 1.709 1.709
61×61 1.711 1.711

FDM [10] 1.735 1.736
DQM [24] 1.715 1.715

Table 3: Circular cylinders: Convergence of computed average
equivalent conductivities with grid refinement forRa = 6×103.

Grid Outer cylinder,keqo Inner cylinder,keqi
41×41 3.089 3.045
51×51 2.936 2.946
61×61 2.922 2.941

FDM [10] 2.973 3.024
DQM [24] 2.958 2.958

Table 4: Circular cylinders: Convergence of computed average
equivalent conductivities with grid refinement forRa = 5×104.

Grid Outer cylinder,keqo Inner cylinder,keqi
41×41 3.465 3.254
51×51 3.241 3.187
61×61 3.167 3.174

FDM [10] 3.226 3.308

Table 5: Circular cylinders: Convergence of computed average
equivalent conductivities with grid refinement forRa = 7×104.

e ψmax
Present DQM[25]

-0.95 22.193 22.162
-0.75 20.721 20.627
-0.5 18.504 18.325
-0.25 15.719 15.508
+0.25 11.269 11.138
+0.5 9.648 9.556
+0.75 8.255 8.127
+0.95 7.284 7.172

Table 6: Eccentric circular-circular annuli: Comparison ofψmax
for Ra = 104 between the present technique and DQM.

e ψmax
Present MQ-DQ[2]

-0.75 23.56 23.52
-0.25 18.68 18.64
+0.25 12.40 12.39
+0.75 10.10 10.09

Table 7: Eccentric square-circular annuli: Comparison ofψmax
for Ra = 3×105 between the present technique and DQM.

Natural Convection in Eccentric Square-Circular Annuli

Consider the natural convection between a heated inner circular
cylinder and a cooled square enclosure with their centres lying
on the vertical line (Figure 4). An aspect ratio ofL/2R = 0.26
(L: the side length of the outer square andR: the radius of the
inner circle),Pr = 0.71, Ra = {5×104,3×105,7×105,106}
and e = {−0.75,−0.25,0.25,0.75} are considered. Like the
previous problem, the values ofψ along the inner and outer
boundaries can be taken to be zeros. Calculations are conducted
on a uniform Cartesian grid of 41×41.

Values ofψmax are given in Table 7. It can be seen that the
present results agree well with those of Ding and Shu [2]. Other
results, namely streamlines and isotherms, are shown in Figure
6, where each plot contains 21 contour lines with their levels
varying linearly from the minimum to maximum values.

Concluding Remarks

In this article, we present a numerical scheme based on Carte-
sian grids and 1D-IRBFNs for the simulation of natural convec-
tion in circular-circular and square-circular annuli. The main
advantages of the present technique lie in the simplicity of the
preprocessing, the ease of implementation and the achievement
of high Rayleigh-number solutions. Accurate results are ob-
tained using relatively coarse grids. This study further demon-
strates the great potential of the RBF technique for solving com-
plex fluid-flow problems. Extension of the present technique to
the case of unsymmetric annuli is currently carried out, and it
will be reported in future work.

Acknowledgements

This research is supported by the Australian Research Council.

664



e = 0.25

e = 0.5

e =−0.25

e =−0.95

Figure 5: Eccentric circular-circular cylinders: Contour plots
of temperature (left) and stream function (right) for the flow at
Ra = 104 and four different values ofe using a grid of 41×41.
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Figure 6: Eccentric square-circular cylinders: Contour plots of
temperature (left) and stream function (right) for the flow ate =
0.75 and four different values ofRa using a grid of 41×41.
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