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Abstract

A critical initial step in multiscale/singular perturbation-type
studies of the mean flow structure of steady wall-bounded tur-
bulent flows involves determining the appropriately reduced,
asymptotically approximate, forms of the mean momentum
equation such that they accurately reflect the dynamicsover spe-
cific subdomains of the flow. Traditionally, such analyses be-
gin with the once-integrated mean momentum equation, rather
than its unintegrated form. Simple examples (turbulent Couette,
laminar Poiseuille) of flows with known dynamical structure,
however, show that physical behavior derived from the once-
integrated momentum equation may be ambiguous with regard
to ascertaining the dominant dynamical mechanisms. Reasons
for this observation and remedies for the shortcomings are dis-
cussed. The remedies involve use of the unintegrated mean mo-
mentum balance equation, and a new approach to finding the
scaling structure of profiles. To clarify specific points, a discus-
sion of turbulent Poiseuille flow is also included.

Introduction

Physical interpretations of the Reynolds averaged momentum
equation relating to the mean dynamics of steady turbulent flow
near a wall are most often based on its once-integrated form
[4, 5, 6, 7]. The objectives of the present effort are to explore
the general applicability of this predominant methodology, to
point out possible sources of confusion in interpretation, to cau-
tion that they may lead to erroneous conclusions, and to suggest
alternatives.

In what follows, arguments typically employed in the analysis
of wall flows are first brought out in the case of steady turbulent
Couette flow. These are shown to lead to possible ambigui-
ties, whereas analysis based on the corresponding unintegrated
form of the averaged momentum equation presents a clear pic-
ture of the basic physical processescontributing to the flow. The
problem of laminar, but high Reynolds number, Poiseuille flow
in a channel has a mathematical formulation which is remark-
ably analogous to turbulent Couette flow. But the usual Couette
methodology is shown to lead to fundamental errors in that con-
text. Similarly, turbulent two-dimensional Poiseuille flow has a
more complex structure, but the same considerations are shown
to apply.

Reasons for the difficulty in properly determining dynamical
structure from the once-integrated form of the governing equa-
tions are briefly discussed, as are some of the implications of
the present findings relative to the classical inner/outer/overlap
layer description of turbulent wall-flows. This leads to a brief
review of recently developed alternative methodologies and
multiscaling approaches.

Specifically, a physically and mathematically justifiable point of
view for all these examples is outlined. It consists, at the outset,
of determining the relative importance of viscosity, turbulence,
and imposed forces in the basic force balance as directly re-

vealed by the unintegrated equation. This sets the stage for ap-
plying recently developed criteria for the existence of “scaling
patches” to ascertain the scaling structure and overall properties
of the mean velocity and Reynolds stress profiles. (Of course all
this is trivially known in the case of the laminar example, which
is included for illustration and comparison.)

The Standard Methodology

As mentioned above, an intrinsic element of the classical formu-
lations for turbulent wall flow is the use of the once-integrated
forms of the momentum equation for the purposes of educing
the dominant dynamical mechanisms. To illustrate this, con-
sider fully developed, incompressible, steady (in the mean) tur-
bulent flow between infinite parallel plates with the lower wall
at y = 0 and the upper wall at y = 2δ. The flow is purely shear
driven by the motion of the upper wall in the positive x direc-
tion, with velocity 2Uc (i.e., the velocity at y = δ is equal to Uc).
Appropriate reduction of the Reynolds averaged Navier Stokes
equations gives,

0 = −dρuv
dy

+
dτ
dy

, (1)

where τ = µdU/dy is the mean viscous shear stress. Recall that
the dimensions of the terms in this equation are force per unit
volume. At this juncture it is relevant to note that equation 1
reveals that the mean dynamics are everywhere determined by
an exact balance between the time averaged viscous force and
the net mean force due to turbulent inertia. This fact is useful
to keep in mind when considering the conclusions derived from
the classical analyses that are now presented.

By integrating equation 1, applying the boundary conditions,
and defining the integral of first term to be a stress-like quantity
T =−ρuv, one obtains,

τ(y)+T(y) = const. = τw, (2)

where τw is the mean wall shear stress. As is apparent, the
dimensions of the terms in this equation are force per unit area
or stress. Inner normalization (i.e., by ν and uτ =

√
τw/ρ, so

that τ+(0) = 1) gives,

τ+ +T + = 1. (3)

Neither τ(y) nor T(y) are analytically derivable. Thus, at this
point in the classical analysis relevant flow field data are exam-
ined. Figure 1 shows the distributions of τ+ and T + as derived
from the DNS data base of Kawamura et al. [3]. As can be seen,
τ+ = 1 at the wall and diminishes to a quantity that is less than
O(1) by y+ � 30, i.e., o(1) for all Rτ = δuτ/ν. Conversely,
T + = 0 at the wall, and rises to O(1) by y+ � 30. These behav-
iors are typically used to provide justification for the classical
interpretation of the average structure of the near-wall region
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Figure 1: Inner-normalized profiles of τ+ and T + in turbulent
Couette flow. Data are from the direct numerical simulation of
[3]

given in virtually all treatments of turbulent wall-flows, e.g.,
[4, 5, 6, 7]. Specifically,

1. in the immediate vicinity of the wall viscous effects are
much larger than those associated with turbulent inertia,

2. in an interior region the momentum field mechanisms as-
sociated with viscous forces and turbulent inertia are of
the same order of magnitude, and

3. for sufficiently large distances from the wall turbulent in-
ertia is dominant.

These regions, of course, correspond respectively to the viscous
sublayer, buffer layer, and inertial sublayer plus core region tra-
ditionally attributed to turbulent wall-flow structure. With re-
gard to attributing the dominant dynamics to specific physical
mechanisms (i.e., viscous versus inertial effects), the conclu-
sions are distinctly at odds with the conclusion drawn earlier
relative to equation 1.

Similarly, outer-normalization of equation 2 gives,

1
Rτ

dU+

dη
+T + = 1, (4)

where η = y/δ. Analyses utilizing equation 4 typically explore
its apparent (formal) limiting behavior as Rτ → ∞, and arrive at
the outer approximation, T + = 1, in the vicinity of η = 1. This
approximation reflects the classical assertion of a turbulent core
region (see item 3. above) within which the viscous force is neg-
ligible. This approximation and equation 3 lead to the inner and
outer equations used as starting point for theories based on two
scaling regions (outer and inner) plus an overlap region. This
formulation underlies the Millikan-type derivation of the loga-
rithmic mean profile, as, for example, presented in Schlichting
and Gersten [5].

On the General Efficacy of the Standard Methodology

The objective now is to further explore the general efficacy of
this methodology by applying it to a flow that has a similar
mathematical description, but for which a complete understand-
ing of the dynamics is a priori known. Toward this aim, con-
sider fully developed, incompressible, steady laminar flow be-
tween infinite parallel plates with the lower wall at y = 0 and
the upper wall at y = 2δ. The flow is driven in the positive x
direction by an applied constant pressure gradient, dp/dx. Ap-
propriate reduction of the Navier Stokes equations gives,

0 = −dp
dx

+
dτ
dy

, (5)

where, in this case, τ = µdu/dy is the actual viscous shear stress.
By integrating equation 5, applying the boundary conditions,
and defining the integral of first term to be a stress-like quantity,
P = −∫

[dp/dx]dy =−y[dp/dx], one obtains,

τ(y)+P(y) = const. = τw. (6)

Inner normalization then yields, as in 3,

τ+ +P+ = 1. (7)

To attain the stated objective, knowledge of the analytical so-
lution in this laminar flow is momentarily suspended. Instead,
the methodology used to educe dynamical structure in the above
turbulent flow case is replicated by examining flow field data.
Profiles of P+ and τ+ for this flow are shown in figure 2. As
can be seen, τ+ = 1 at the wall and linearly diminishes to zero
at η = 1. Conversely, P+ = 0 at the wall, and linearly rises to
unity at η = 1. Thus, while the actual functional forms of the
stresses (or stress-like quantities) are different for the two cases,
the apparent conclusions for the laminar channel flow exhibit
clear similarities to those found for turbulent Couette flow.1 If
one were to utilize the identical rationale employed above, the
following would again be erroneously concluded:

• In the vicinity of the wall, viscous forces are much larger
than those associated with pressure; in an interior region
the momentum field mechanisms associated with viscous
forces and pressure forces are of the same order of mag-
nitude; and for a region near the channel centerline the
applied pressure gradient is dominant.

Similarly, outer-normalization of equation 6 gives,

1
Rτ

du+

dη
+P+ = 1. (8)

Application of the reasoning employed for turbulent Couette
flow leads to the similar conclusion that when R τ � 1 (but not
so large that laminarity is unreasonable) there is a core region
near the center of the channel within which the pressure force
is dominant. That is, near the centerline, this reasoning erro-
neously justifies the simplification, P+ = 1.

Discussion

In the above, two prototypical viscous flows were analyzed us-
ing the approach commonly applied to turbulent wall-flows.
Later, turbulent Poiseuille flow in a channel will be discussed

1Note that the validity of a mathematical methodology should be
independent of the specific functions involved.

Figure 2: Inner-normalized profiles of τ+ and P+ in laminar
channel flow.
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in this same vein. An essential element of this approach in-
volves the use of the once-integrated form of the momentum
equation to identify the dominant dynamical mechanisms in cer-
tain subdomains, and from this arrive at appropriately reduced
normalized forms of this equation. Not surprisingly, applica-
tion of this methodology to turbulent Couette flow recovers the
set of conclusions typically used to justify the highly accepted
inner/outer/overlap scaling region formulation. Application of
this same methodology to laminar channel flow, however, leads
to a series of conclusions that are verifiably false. The inability
of the approach traditionally applied to turbulent wall-flows to
correctly recover the known physics of laminar channel flow is
interpreted to indicate that this methodology can suggest erro-
neous conclusions. The reasons for this are now explored fur-
ther.

An primary element of the above analyses centers on using the
basic averaged equations to discern the relative importance of
viscosity effects versus turbulence (i.e., inertial) effects. It is
evident that this concept is ambiguous without further elabora-
tion. With this aim the following points are offered:

1. Equation 1 is a direct statement that the forces in the chan-
nel due to viscosity are everywhere exactly balanced by
those due to turbulent momentum transfer. Therefore if,
by “viscosity effects” one means forces, then in this flow
viscosity effects are always codominant with turbulence
effects.

2. The integrated form of these equations, namely 3 and 4,
while correct, may direct one to different, even erroneous,
conclusions, partly because they express a balance be-
tween stresses in the fluid that are integrals of the forces,
rather than between the forces themselves. Possible mis-
understandings on this point can be resolved by recogniz-
ing that the constant “1” on the right of equation 3 repre-
sents the stress at the lower wall, which is a consequence
of viscosity. Therefore the “viscous” term in that equation
should be considered to be 1− τ + and the turbulence term
T +. They balance exactly. Again, with that interpretation
of terms and measuring “effect” in terms of stresses, one
has that viscosity is everywhere codominant with turbu-
lence. From a point of view near the centerline, the con-
stant on the right of equation 3 represents the effect that
a (viscous) stress imposed at a distant point (the wall) has
on the stress at the point under consideration. The same
is true of the outer-scaled version (the “1” on the right of
equation 4). If one excludes that term by considering only
local influences due to mean velocity gradients, then it is
true that in a region away from the wall, turbulence effects
on the stress are dominant over viscous effects.

3. Use of the once-integrated form also includes boundary
condition information that does not come into play when
considering the unintegrated force balance. This effect is
made clear by setting the origin of the channel along the
centerline in the laminar flow example, in which case the
distribution of P remains linear, but is now zero at the cen-
terline. Clearly the dynamical significance of the viscous
or inertial mechanisms should not depend on the choice of
coordinate system.

4. The governing balance equations assume many different
forms, depending on the choice of scaling applied to the
variables. Examples are equations 3 and 4, written using
inner versus outer space variables respectively. There are,
however, many other possible scalings. In any case, each
term in the balance equation can be identified as being
derived from either viscous or inertial mechanisms. Any

theoretical treatment of the relative magnitudes of these
terms, under any given scaling choice, hinges on the ques-
tion of whether that scaling is the natural one at the loca-
tion under consideration. The concept of natural scaling
means a scaling of the variable such that derivatives of the
dependent scaled variable with respect to the independent
ones are ≤ O(1). That is, without this condition, it is a
certainty that the scaled variables have no chance of main-
taining invariant values with increasing Rτ. The natural
scaling depends on the location within the flow domain,
and changes according to the dominant balance of forces;
a particular case being outer scaling.

5. The reduction of equation 4 to T + = 1 is not obvious un-
less the first term in equation 4 is actually known to be-
come small when Rτ becomes large, and that fact will fol-
low if η is the natural scaled distance in that region, for
then dU+/dη will be bounded independently of R τ. Al-
though this is the case for Couette and turbulent channel
flow, it is not for some analogous flow situations, includ-
ing the high-Rτ laminar Poiseuille flow described earlier.

6. The correctness of the traditional outer scaling for turbu-
lent Couette or channel flow near the centerline is cor-
roborated by experimental evidence. The only available
purely theoretical justification for it lies in the method-
ology of Fife et al. [1, 2], where this conclusion is ob-
tained along with the correctness of a whole hierarchy of
scalings, each with its own scaling domain in the channel.
Moreover, in Couette flow each member of the hierarchy
reflects a direct balance between the mean viscous force
and the mean inertial force owing to the turbulent fluctua-
tions. The union of all the scaling domains covers almost
the entire channel; the last and largest member of the hi-
erarchy being the outer scale. Thus, the appropriateness
of the outer scale does not arise by neglecting the viscous
force, but rather as the natural culmination of a scaling
layer hierarchy endowed with the property that within any
given member of the layer hierarchy the viscous and iner-
tial forces identically balance.

Some implications of the above are briefly noted. One relates to
the fact that equation 1 indicates that there are no subdomains in
turbulent Couette flow in which one can rationally neglect the
mean viscous shear force versus the mean effects of turbulent
inertia, as there is in pressure-driven channel flow. This may
be interpreted as there being no classically defined (inertially
dominated) outer domain in the Couette case, although “outer”
scaling is appropriate in a region near the channel center. Note
the two definitions for the term “outer”. Another observation
is that the inherent imposition of boundary condition informa-
tion may underly considerable ambiguity in attempts to discern
dynamical structure from the once-integrated momentum equa-
tion. Lastly, it is important to emphasize the obvious fact that
the correct interpretations of basic dynamical structure related
to force balance can always be found from a direct analysis of
the unintegrated form of the momentum equation.

In the case of turbulent Couette flow, this analysis is trivial and
leads to the ubiquitous balance between forces arising from vis-
cosity and from turbulence. Turbulent Poiseuille flow is more
complicated, but in this case the unintegrated mean momentum
equation also provides a direct line to the basic physics: data
on the relative magnitudes of its three terms, as a function of
position in the channel (see figure 1 of [8]), answer the basic
question, “Among the three possible types of forces acting on
the fluid (viscous, turbulent, and imposed), which ones are the
dominant ones, and where?” This knowledge serves to partition
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the flow field into four physical “layers” (not scaling layers, but
rather regions where specific pairs or triples of forces are in bal-
ance).

Further analysis has been performed with a new theoretical
framework for turbulent wall flows that is entirely independent
of the classical hypothesis of an overlap scaling region [1, 2].
This new theoretical framework, which has been applied to tur-
bulent Couette, Poiseuille, Couette-Poiseuille and several other
flow situations, not only reveals the necessary conditions for a
logarithmic profile, but also rigorously reveals that these regions
are connected by the aforementioned hierarchy of scaling lay-
ers, not by an overlapping domain within which the inner and
outer scalings are simultaneously valid. In this regard, one ele-
ment of the classical theory, namely the need for an intermedi-
ate coordinate, ŷ = ηRα

τ (0 < α < 1), (see [5] p. 523) is retained.
Moreover, a theoretical basis is provided for determining the lo-
cations and extents of the four physical layers mentioned above.

This new framework employs a reasonable assumed criterion
for the existence of “scaling patches”, i.e., regions where cer-
tain special scalings (natural scalings) of the variables in the
mean momentum equation are valid. It should finally be men-
tioned that the application of this very criterion to the lami-
nar Poiseuille flow used above to illustrate the inadequacies of
classical formal methods, immediately serves to disallow those
methods, clarifying why they are inadequate.

Conclusions

For any given problem, the appropriately simplified form of the
unintegrated Reynolds averaged Navier-Stokes equation is the
time mean differential statement of the Newton’s second law.
Thus, for the purposes of educing physics and/or establishing
the dominant terms in a multiscale analysis, it is the clearest
time-mean expression of the dynamical mechanisms at play.
While derived from the unintegrated momentum balance, inter-
pretation of the once-integrated form is not as straight-forward.
Though common practice, it is formally incorrect to refer to
the once-integrated form as the momentum balance – just as it
would be erroneous to similarly refer to the equation for the
mean velocity profile (twice-integrated form). The analyses
herein indicate that erroneous conclusions may be drawn, rel-
ative to flow physics and mathematical structure, if the terms
in the once-integrated form are not tracked back to their origin,
i.e., to the mechanisms represented in the unintegrated form.
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