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Abstract 
Free convection cooling of isothermal circular cylinders 
positioned above a horizontal plane is investigated numerically, 
using a commercial Computational Fluid Dynamics (CFD) 
software package. Computation is performed for high Rayleigh 
number, in the range 109 − 1011. Chien’s turbulence model of 
low-Reynolds-number K-ε is used, with Prandtl number of 0.707, 
corresponding to air near standard conditions. Influence of the 
underlying plane on heat transfer from the cylinders' surface is 
examined. As the gap between the plane and cylinders is 
narrowed, a pattern can be seen whereby heat transfer reaches a 
minimum that moves closer to the cylinder surface with higher 
Rayleigh number. The plane’s thermal condition, adiabatic versus 
isothermal, produces no significant difference in the heat transfer 
for the present range of gap ratio, in contrast to laminar case. 
 
Nomenclature 
A surface area per unit length of the whole cylinder 
cp specific heat at constant pressure 
D cylinder’s diameter 
g gravitational acceleration (9.81 m/s2) 
Gr Grashof number = g β D3(Ts − T∞) / ν2

h gap between cylinder and the plane 
haverage average heat transfer coefficient = Q / [A (Ts − T∞)] 
k (molecular) thermal conductivity 
K turbulent kinetic energy 
Nuaverage average Nusselt number = haverage D / k 
p pressure 
Pr (molecular) Prandtl number = µ cp / k = ν / α 
Prt turbulent Prandtl number = µ t cp / k t = ν t / α t
Q heat transfer rate per unit length of whole cylinder surface 
Ra Rayleigh number = g β D3 (Ts − T∞) / (ν α) 
T temperature 
Ts temperature of cylinder’s surface (387.52 K) 
T∞ ambient temperature (300 K) 
u velocity in the x-direction 
uτ friction velocity = (τw / ρ)1⁄2 

v velocity in the y-direction 
x coordinate in the horizontal direction 
y coordinate in the vertical direction (increasing upward) 
y+ non-dimensional distance from closest wall = δ / (ν / uτ) 
δ distance from closest wall 
yplane y-coordinate of the horizontal plane 
α (molecular) thermal diffusivity = k / (ρ cp) 
β thermal expansion coefficient 
ε turbulent kinetic energy’s dissipation rate 
µ (molecular) viscosity 
ν (molecular) kinematic viscosity = µ / ρ 
ρ density 
τw wall shear stress 
Subscript t: turbulent 
 

Introduction 
This paper reports on heat transfer by free-convection at high 
Rayleigh number from a heated, isothermal horizontal circular 
cylinder positioned above a horizontal plane. This work is an 
extension to the turbulent regime of a previous one [7]. 
 
Circular cylinder is a very common geometry, and objects of this 
shape abound. Examples are fluid-carrying pipes, electrical 
wires, etc. Heat transfer from circular cylinders has been 
investigated by many authors, especially the situation of an 
isothermal horizontal cylinder exchanging heat with its 
surroundings in a totally unobstructed free convection regime. 
For this configuration, the empirical correlations of Morgan [19] 
who had reviewed a large body of literature, and of Churchill and 
Chu [4] have been particularly well accepted [8,17]. This 
unobstructed free convection around an isothermal, horizontal 
circular cylinder has also been investigated computationally by 
other authors [5,14-15,18,22]. The common situation when a 
cylinder is positioned close to a plane has also been considered. 
However, focus has been on the case of the heated cylinder being 
positioned between vertical walls [6,11,16,21], or below a ceiling 
[1,12,15]. The case of the cylinder having its surface temperature 
higher than its surroundings’ and positioned above a plane (or, 
equivalently, the cylinder having surface temperature lower than 
its surroundings’ and positioned below a plane) seems to have 
only been treated experimentally by Jones and Masson [9], and 
computationally for isothermal underlying plane and low Grashof 
numbers (Gr ≤ 8000) by Müller and co-workers [10,23] (whose 
heat transfer results are, however, too low in comparison with 
correlations of, for example, [4]). In this work, the situation of a 
heated cylinder positioned above a horizontal plane is 
investigated using computational method for Rayleigh number in 
the range of 109 − 1011, using a fluid with Prandtl number 0.707 
(corresponding to Gr = 1.41×109 − 1.41×1011). Both cases of 
isothermal and adiabatic plane will be considered. 
 
Modelling and Computation 
The physical model is depicted in Figure 1. A horizontal circular 
cylinder of diameter D is positioned above a solid horizontal 
plane, with gap h between the two items. The cylinder’s surface 
is assumed to have a uniform temperature Ts, while the 
surrounding fluid has the constant ambient temperature T∞, with 
Ts > T∞. Here T∞ is fixed at 300 K, and Ts at 387.52 K. Note that 
this situation is also equivalent to when the cylinder is positioned 
below the plane, but with Ts < T∞. 
 
The underlying plane is assumed to either be of the same 
temperature as the ambient fluid’s (300 K), or be insulated. Free 
convection would result from temperature difference between the 
cylinder’s surface and the surrounding fluid, and is the subject of 
this study. Attention will however be given to the total heat 
transfer rate from the cylinder’s surface, which is characterised 
by an average Nusselt number. 
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All fluid properties are assumed to be constant and corresponding 
to those of air at 300 K and standard pressure at sea level (101.3 
kPa); but Boussinesq approximation is also assumed for the 
buoyancy force arising from density variation as a result of 
temperature change. The following values of molecular 
properties are used: ρ = 1.161 kg/m3; µ = 1.846×10 −5 N-s/m2; ν = 
1.589×10 −5 m2/s; k = 0.0263 W/m-K; cp = 1007 J/kg-K; α = 
2.25×10 −5 m2/s; Pr = ν / α = 0.707; β = 1 / T∞ = 1/300 K−1
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Figure 1. Physical model of the considered problem: free convection 
about a heated circular cylinder positioned above a horizontal solid plane. 
 
With these values, the Rayleigh number Ra, which is a key 
parameter in free convection, can be defined and having the 
following expression 
 
Ra = g β D3 (Ts − T∞) / (ν α) = 8.00×10 9 D3

 
Thus, Ra can be varied simply by changing the cylinder’s 
diameter D. Turbulent Prandtl number is taken to be constant at 
Prt = 0.9, following a suggestion in [2]. 
  
Figure 2 shows the computational domain, which is two-
dimensional, and in which the following dimensions and 
coordinates are used 
 
• O: centre of the cylinder; also origin of the used Cartesian 

coordinate system with x, y axes 
• F: highest point of the cylinder’s surface; y = D / 2 
• A: lowest point of the cylinder’s surface; y = − D / 2 
• B: intersection of the solid horizontal plane (represented by 

BC) with the y-axis; y = yplane 
• C: outer, lower corner of the computational domain; x = 5D 
• D: outer, upper corner of the computational domain; x = 5D, y 

= 5D 
• E: inner, upper corner of the computational domain: y = 5D 
 
Since turbulence is expected to have already occurred at the high 
Rayleigh number considered here, a Reynolds-Averaged Navier-
Stokes (RANS) formulation is used, wherein turbulence affects 
the mean flow through a turbulent viscosity µt; turbulent stresses 
are assumed to be proportional to the mean rates of strain via µt. 
The low-Reynolds-number K-ε turbulence model of Chien [3] is 
adopted. Thus, governing equations are those of Reynolds-
averaged conservation of mass and momentum, and balance of 
energy, plus the two transport equations for K and ε. 
 
Referring to Figure 2, boundary conditions for the mean variables 
(velocity components, pressure and temperature) are as follows 
• On the cylinder’s surface, semi-circle FA: zero velocity and 

uniform temperature, u = v = 0, T = Ts 

• AB and EF are on the line of symmetry; line-of-symmetry 
conditions are imposed: u = 0, ∂v/∂x = 0, ∂T/∂x = 0 

• CD and DE represent the ambient conditions; the fluid has 
constant ambient pressure and temperature, namely p = 0 
(gauge), T = 300 K. However, the thermal condition here 
applies only on those sections of the boundary where there is 
inflow; if the computation reveals outflow on any sections, the 
constant temperature condition there will be ignored; instead, 
temperature will be computed. Similarly, the constant pressure 
condition applies only on those sections of the boundary where 
there is outflow; if the computation reveals inflow on any 
sections, the constant pressure condition there will be ignored, 
and pressure will be computed instead 

• BC represents the underlying horizontal solid plane: zero 
velocity u = v = 0; as for its thermal condition, two alternatives 
are used: 

1) isothermal plane with constant temperature Tplane = 300 K 
2) adiabatic (insulated) plane with ∂T/∂y = 0 

• As will be shown below, the situation of totally unobstructed 
free convection is also considered. In this case, BC will be 
positioned at a sufficiently large distance from the cylinder, 
and ambient conditions similar to those on CD and DE are also 
imposed on BC. 

 

 
Figure 2. Computational model of the two-dimensional flow field. 
Cylinder’s surface is represented by the semi-circle FA, the underlying 
solid horizontal plane by BC, lines of symmetry by AB and EF, and 
ambient conditions by CD and DE. 
 
As regards the turbulence-model variables K and ε, they are 
prescribed as follows 
• On line of symmetry AB and EF: line-of-symmetry conditions 

are imposed: ∂K/∂x = 0, ∂ε/∂x = 0 
• On solid surfaces FA and BC: default solid-surface condition 

of the software package (see below) is adopted; this would 
entail K = 0 and ε = 0, following [3] 

• On boundaries CD and DE representing ambient conditions, a 
low level of turbulence is assumed, with constant K = 
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4.15×10−7 m2/s2 and ε = 2.20×10−10 m2/s3. These K and ε 
values have been chosen so that present computational results 
of heat transfer agree with correlations from [4] for Ra = 1010. 
However, if the computation reveals outflow on any sections 
of these boundaries, the constant K and ε condition there will 
be ignored; instead, K and ε will be computed 

The commercial software package CFD-ACE from the ESI 
Group is used for the computation. The numerical scheme is the 
Finite Volume method, and the coupled system of governing 
equations is solved iteratively for the two mean velocity 
components, mean temperature and pressure, plus K and ε. 
Convergence criterion of reduction of residuals in the solved 
variables by both 3 and 4 orders of magnitude is adopted. This is 
deemed adequate; a comparison of the solutions with residual 
reduction of 3 orders of magnitude and those with residual 
reduction of 4 orders of magnitude shows extremely small 
difference; thus for example, the relative difference in the total 
heat transfer rate from the cylinder’s surface for the case of 
totally unobstructed free convection at Ra = 1010 is only 
1.3×10−4. Computation is done on Pentium 4 machines running 
Windows 2000 and Unix operating systems. Double precision 
(64 bits) has been used. 
 
Grid convergence tests have also been performed to ascertain the 
adequacy of the grid patterns used. Thus, for example, as the 
number of grid points on the half cylinder’s surface of the 
computational model (semi-circle FA in Figure 2) is increased 
from 418 to 478, then to 538 and finally to 598, change in heat 
transfer for the case of totally unobstructed free convection at Ra 
= 1010 is only 1.30%, 0.72%, and 0.32% respectively. Similar 
variations are also seen with Ra = 109 and 1011. From such tests, 
patterns with 598 grid points on the cylinder’s half surface are 
deemed adequate and used. 
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Post-solution checks of y+ values of grid points closest to 
cylinder’s surface show y+ < about 0.6, thus confirming that the 
grid pattern there is sufficiently fine for the Chien’s model. 
 
Results and Discussion 
To provide another solution to what can be seen as a bench mark 
problem [22], and also to provide further confidence in the 
software package and the computational scheme used, the case of 
the totally unobstructed free convection about an isothermal 
horizontal circular cylinder is also treated. Table 1 thus shows the 
present computational values of the average Nusselt number 
Nuaverage over the whole cylinder surface, along with other results 
from the literature for Pr ≅ 0.7 (0.707 in the present work). 
 

Average Nusselt number Nuaverage

Ra       109  1010  1011

Present work     108.0 239.8 546.3 
Churchill & Chu [4]   115.7 240.5 505.4 
Farouk & Güçeri [5] Very similar to Kuehn & Goldstein [13] 
Kuehn & Goldstein [13]  101  216  465 
Matveev & Pustovalov [18]  103  226.2 496 
Raithby & Hollands [20]  103.3 222.0 478.1 
 
Table 1. Comparison of the average Nusselt number for totally 
unobstructed free convection around an isothermal horizontal circular 
cylinder, with Pr ≅ 0.7 (0.707 for the present work). 
 
It can be seen that in addition to excellent agreement with 
Churchill & Chu [4] at Ra = 1010 , the present values are in fair 
agreement with other published results. 
 

Figure 3 shows variation of the average Nusselt number Nuaverage 
in terms of gap ratio h/D and Rayleigh number Ra, for both when 
the underlying solid plane has constant temperature equal to that 
of the ambient fluid (300 K), and when it is insulated and having 
adiabatic condition. 
 
First, it is seen that for the range of h/D considered, the thermal 
condition of the plane has virtually no effect on the heat transfer. 
This is different to the laminar results [7], and indicates that the 
thermal boundary layer about the cylinder’s surface would be 
very thin. In fact, this is clear in the graphical output of 
temperature contours (not shown). 
 
As h/D is reduced (from about 4.5), if Ra is also large (here, 1010 
and 1011), a pattern can be seen whereby Nuaverage increases to a 
maximum, and this maximum occurs closer to the cylinder at 
higher Ra. As h/D is reduced further, Nuaverage decreases to a 
minimum, then increases again as the cylinder’s surface is 
approached (except for Ra = 1011; this is discussed below). At 
smaller Ra value (here 109), Nuaverage decreases to a minimum 
without passing through a maximum. 
 
That Nuaverage goes through a maximum at high Ra is believed to 
be due to increased turbulence in the flow as it has to turn sharply 
as a result of the plane’s presence. This does not happen at lower 
Ra, in similarity with the laminar situation [7], because the plane 
also reduces the flow velocity. 
 

Figure 3. Variation of the average Nusselt number Nuaverage in terms of 
Rayleigh number Ra and gap ratio h/D, for both isothermal and adiabatic 
underlying plane. 
 
With h/D = 0.05, convergence has not been obtained for Ra = 
1011, unlike for Ra = 109 and 1010. As a result, it is not certain if 
the minimum in Nuaverage occurs at around this h/D value, or 
closer to cylinder, i.e. at h/D < 0.01. This minimum must exist 
however, because infinite heat transfer by conduction would 
happen between the cylinder and the plane if it is isothermal and 
h/D = 0; and as yet no significant difference between results of 
isothermal and adiabatic planes at h/D = 0.01 is seen. All this 
shows that the minimum in Nuaverage moves closer to cylinder’s 
surface as Ra increases. This also agrees with expectation. For, as 
the gap narrows, convection is reduced, and before conduction 
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can play a significant role, heat transfer is reduced. A more 
vigorous flow associated with higher Ra would bring the effects 
of convection closer to the cylinder, resulting in Nuaverage 
reaching its minimum closer to the cylinder as well. 
 
Change in the average Nusselt number relative to its values 
corresponding to the totally unobstructed situation can be seen 
more clearly in Figure 4, wherein the percentage change in 
Nuaverage is defined as 
 
Change in Nuaverage = 100×(Nuaverage−Nuave_unobstructed) / 
Nuave_unobstructed
 
with Nuave_unobstructed being the Nusselt number’s value 
corresponding to the totally unobstructed free convection (given 
as “Present work” in Table 1). 
 
Figure 4 shows that at h/D = 4.5, the effects of the plane on heat 
transfer is still significant; also, the change in Nuaverage is more 
pronounced with larger Rayleigh number. These are in contrast to 
the laminar case [7], but agree with expectation. For, with the 
present flow, the conduction-influenced region has been reduced 
significantly. The plane thus affects the more vigorous flow 
associated with larger Ra more. 
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Figure 4. Percentage change of the average Nusselt number Nuaverage 
relative to its value of the totally unobstructed free convection, 
corresponding to both isothermal and adiabatic underlying plane. 
 
Conclusions 
Free convection about an isothermal horizontal circular cylinder 
positioned above a solid plane has been considered 
computationally, for Ra = 109 − 1011. Thermal condition of the 
underlying plane has insignificant effect on the heat transfer from 
cylinder’s surface, as gap ratio h/D is reduced to as low as 0.01, 
thus indicating very thin thermal boundary layer. Change in heat 
transfer due to the plane’s presence is more pronounced at higher 
Ra for the range of h/D considered, and the plane’s influence is 
still significant at the rather large value of h/D = 4.5. All these are 
in contrast to the laminar situation. 
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