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Abstract

Reassessment of compiled data reveal that recorded scatter in
the hot-wire measured near-wall peak in viscous-scaled stream-
wise turbulence intensity is due in large part to the simultane-
ous competing effects of Reynolds number and viscous-scaled
wire-length l

�
( � lUτ

�
ν, where l is the wirelength, Uτ is fric-

tion velocity and ν is kinematic viscosity). These competing
factors can explain much of the disparity in existing literature,
in particular explaining how previous studies have incorrectly
concluded that the inner-scaled near-wall peak is independent of
Re. We also investigate the appearance of the, so-called, ‘outer-
peak’ in the broadband streamwise intensity, found by some re-
searchers to occur within the log-region of high Reynolds num-
ber boundary layers. We show that this ‘outer-peak’ is most
likely a symptom of attenuation of small-scales due to large l

�
.

Fully mapped energy spectra, obtained with two different l
�

,
are presented to demonstrate this phenomena. The spatial at-
tenuation resulting from wires with large l

�
effectively filters

small-scale fluctuations from the recorded signal.

Introduction

As a first approximation, the spatial attenuation due to a single-
normal wire of finite spanwise length ought to be a simple case
of integrating the fluctuating velocity across that span. For
turbulent flows, this process is complicated by the fact that
the velocity fluctuations are composed of a large range of su-
perimposed time and length-scales. Boundary layers pose the
additional complication that such fluctuations are anisotropic
(owing to highly elongated turbulence structures) and are also
a function of the distance from the wall. Thus for turbulent
boundary layers it is unlikely that a treatment based purely on
isotropic assumptions (such as that proposed by Wyngard [34])
will successfully describe attenuation due to spatial resolution.
A successful analytical method must consider the width of the
energetic fluctuations, as compared to the spanwise integral
length of the sensor element. This requires spectral informa-
tion in the spanwise direction (i.e. the energy contribution at
each spanwise wavenumber, ky). Direct Numerical Simulations
(DNS) indicate that the spanwise spectral composition of u fluc-
tuation is a highly complex function of distance from the wall
(z) and Reynolds number Re (see for instance [1, 16]). Ulti-
mately, as DNS are extended to ever higher Reynolds numbers,
it may be possible to produce functional forms that describe this
energy content for a given z and Reynolds number. However,
until such time, we must continue to rely on experimental data
to provide guidelines for spatial attenuation of hot-wire sensors.

Perhaps the most well-known experimental study into spatial
resolution of hot-wire sensors is that performed by Ligrani &
Bradshaw [19]. They interrogated a turbulent boundary layer
at a single moderate Reynolds number, using numerous dif-
ferent sensors of varying l

�
and l

�
d. In so doing they pro-

duced two key recommendations for accurate measurements,
both of which have since become standards for hot-wire design
(l
���

20 and l
�
d � 200). Since that time, numerous other stud-

ies have attempted to consider the effects of spatial resolution,
often with seemingly conflicting results. One problem here has
been that few of these studies have repeated Ligrani & Brad-
shaw’s approach of using numerous different hot-wire sensors
at a single Reynolds number. Hence much of the spatial resolu-
tion behaviour is hidden within more subtle Reynolds number
effects, as well as being spread across a wide number of (seem-
ingly disparate) studies. We here attempt to redress this prob-
lem, following the insightful approach of Klewicki & Falco [18]
to draw data together from a wide number of studies, consider-
ing simultaneously the effects of both Reynolds number and l

�
.

As increasing numbers of higher Reynolds number experimen-
tal facilities come on-line, we would expect in general to see
a tendency in experiments towards a relaxation of Ligrani &
Bradshaw’s key recommendations. Unless very large facilities
are built, high Reynolds numbers will tend to be accompanied
by a concurrent reduction in the viscous scale (i.e ν

�
Uτ will

become small), making it increasingly difficult to ensure sen-
sor lengths of l

� � 20 or smaller. Thus there is a real need
to expand our current knowledge of spatial resolution effects
to higher Reynolds numbers. In addition, Ligrani and Brad-
shaw’s investigation is focussed entirely on the near-wall re-
gion, close to the peak in streamwise turbulent intensity (at
z
���

15, where z is the wall-normal ordinate and z
� � zUτ

�
ν).

There is a real need to consider possible effects of spatial reso-
lution on measurements in other regions of the boundary layer,
particularly the log region where some recent high Reynolds
number measurements seem to be reporting the existence of a
second outer hump in the streamwise intensity [27, 8]. The ex-
istence of such an ‘outer hump’ is investigated here experimen-
tally through the study of attenuation in energy spectra across
a high Reynolds number (Reτ � 14000) boundary layer, using
two wires of widely differing l

�
.

Apparatus

Facility

Experiments are conducted in the High Reynolds Number Tur-
bulent Boundary Layer Wind-Tunnel (HRNBLWT) at the Uni-
versity of Melbourne. This is an open-return blower wind-
tunnel with working section nominally 27 � 2 � 1 m. Measure-
ments are made on the tunnel floor, 23 m downstream of the
tripped inlet. Pressure gradient is nominally zero, with pres-
sure coefficient (Cp) variation along the entire 27 m length set
to within � 1 	 0%. Further details of the facility are available in
Nickels et al. 2005 & 2007 [28, 29].

Constant temperature anemometry
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Reτ U∞ 
 ν
Uτ � δ probe l l � d l

d ∆t � fs fl p  TU∞
δ �

(ms � 1) ( � m) (m) (mm) ( � m) (kHz) (kHz)

7350 9 � 84 44 � 9 0.330 55P05 1.00 22 5.0 200 0.37 20.000 10 14 600
7440 10 � 06 44.1 0.328 special 3.50 79 5.0 700 0.37 20.833 10 20 200

14210 19 � 94 23.0 0.326 55P15 0.50 22 2.5 200 0.70 40.000 20 22 000
14020 20 � 04 22.7 0.318 55P05 1.80 79 5.0 360 0.69 40.667 20 15 300

Table 1: Experimental parameters for hot-wire experiments.

All hot-wire probes are operated using an AA Lab Systems AN-
1003 anemometer in constant temperature mode with overheat
ratio of 1 	 8. The channels used for these measurements are all
equipped with ultra low noise amplifier, frequency compensa-
tion and high performance signal conditioner. The measured
frequency response of the system to an internal pulse was found
in all cases to be greater than 50kHz. Fluctuating voltage sig-
nals from the anemometer were sampled using a 16 bit data ac-
quisition board (Microstar DAP3000a/21 ). Sampling frequen-
cies and low-pass filter settings are given in Table 1 along with
sample intervals. The hot-wires are statically calibrated in-situ
against a Pitot-static tube pair before and after each boundary
layer traverse. Third-order polynomial curves are fitted to the
calibration data to obtain calibration constants. Linear inter-
polation between the pre- and post-calibration curves is used
to correct for temperature drift during the course of the ex-
periment. Atmospheric conditions are monitored continuously
throughout the experiments using a calibrated thermocouple
and a barometer with an analogue output (Sensortechnics 144S-
BARO). Freestream velocity U∞ is also monitored throughout
the course of the experiment using the calibration Pitot-static
tube pair.

Probes

Two boundary layer type probe-body geometries are used
through the course of these experiments; Dantec type 55P05
and 55P15 with prong spacings of 3 and 1.25 mm respectively.
These probes are manufactured by the Auspex Corperation. The
tungsten wires supplied by the vendor are removed and replaced
with Wollaston wires (with a platinum core of various diame-
ters d). The Wollaston wire is soldered to the prong tips and
then etched over the central portion to reveal the desired length
of platinum filament (l). See inset of Figure 1 for a sketch of
the etched sensing element fabricated to a boundary type probe.
For the majority of the data (except the very long probe lengths)
this etched length is chosen to give an l

�
d ratio of 200 (where

l is the length of the etched platinum filament and d is the di-
ameter). This is in keeping with the earlier recommendations
of Ligrani & Bradshaw [19]. For the very long wire lengths, a
55P05 probe body has been modified to give an overall prong
spacing of 5 mm. This modified probe has higher length-to-
diameter ratios (5 � m core with 3 	 5 mm etched length, giving
an l
�
d � 700).

Experimental Conditions

Table 1 gives the full range of experimental conditions and
probe/sensor geometries. Throughout the experiments de-
scribed here, x, y and z are the streamwise, spanwise and wall-
normal axes, with u, v and w denoting the respective fluctu-
ating velocity components. U∞ is the freestream velocity and
Uτ is the friction velocity, determined from a Clauser fit to the
logarithmic portion of the mean velocity data (using constants
κ � 0 	 41 and A � 5 	 0). Capitalised velocities (e.g. U) and over-
bars indicate time-averaged values. The superscript

�
is used

to denote viscous scaling of length (e.g. z
� � zUτ

�
ν) veloci-

ties (e.g. U
� � U

�
Uτ) and time (e.g. t

� � tU2
τ
�
ν). The fric-

tion Reynolds number Reτ (also known as the Karman num-
ber or δ

�
) is given by δUτ

�
ν, where δ is the boundary layer

thickness determined from a modified Coles law of the wall /
wake fit to the mean velocity profile. The length of the plat-
inum sensing element is given by l and l

�
in physical and

viscous-scaled units respectively. The wire diameter is given
by d and the length-to-diameter ratio by l

�
d. The sampling fre-

quency and low-pass filter settings are denoted by fs and fl p
respectively. The non-dimensional sample interval is given by
∆t
��� � ∆tU2

τ
�
ν, where ∆t � 1

�
fs). The total length in seconds

of the velocity sample at each height is given by T . This is non-
dimensionalised using outer variables to give sample length in
terms of boundary layer turnover times TU∞

�
δ. For converged

statistics, these numbers need to be large. It is becoming clear
that the largest structures in boundary layers, occurring in the
logarithmic region, can commonly exceed 20δ in streamwise
length [17, 12, 10, 9, 14, 26]. For converged statistics in the log
region, we would typically require several hundreds of these
events to advect past the sensor array (to ensure a stable enem-
ble average). For facilities such as the Melbourne tunnel, where
high Reynolds numbers are attained with relatively low flow
speeds and a very long development length (to ensure a large
viscous length-scale), such requirements can necessitate very
lengthy boundary layer traverse experiments (approximately 12
hours for well converged statistics at U∞ � 10 ms � 1).

The near-wall peak in streamwise turbulence intensity

Figure 1 shows a typical turbulence intensity and mean velocity
profile from a hot-wire boundary layer traverse. It is noted that
the turbulence intensity rises to a pronounced peak in the near-
wall region. There is good general agreement over the wall-
normal location of this peak, which appears to obey viscous
scaling over a large range of Reynolds number, with z

�
p � 15 � 1

widely reported in the literature (where the subscript p, refers to
the peak value). Regarding the magnitude of the peak, however,
there is more incongruity. We here denote the peak using the
symbol ϕ such that,

ϕ �������
u2

U2
τ
����� p 	 (1)

This value is represented on Figure 1(a) by the horizontal
dashed line. In a study that has since become a standard for hot-
wire design, Ligrani & Bradshaw [19] unequivocally demon-
strate that the measured value of ϕ is a function of the viscous-
scaled length of the hot-wire sensing element (l

�
), with ϕ tend-

ing to reduce as l
�

increases. The inset on Figure 1(a) includes
a representation of the hot-wire sensor. The length l is defined
as the length of the sensing element, which is the length of the
etched (for Wollaston) or unplated (for tungsten type) portion
of the wire. Whilst the results from [19] are compelling, the
study was conducted at a single, quite low, Reynolds number
(Reτ

�
1000). In the interim, various studies have suggested
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Figure 1: Example mean statistics from a turbulent boundary
layer at Reτ

�
7300 (a) turbulence intensity results, dashed hor-

izontal line shows magnitude of peak intensity ϕ; (b) mean ve-
locity profile, solid lines show linear and logartihmic regions,
u
� � z

�
and u

� � 1
κ log

�
z
�����

A. Dotted lines show edge of
boundary layer, and dot-dashed show wall-normal location of
peak, zp.

that the peak value ϕ may in fact also be a function of Reynolds
number [18, 5, 23, 22, 21]. However, this assertion has not
gone altogether unchallenged. Mochizuki & Nieuwstadt [24]
and Durst et al. [6] have reported no growth in ϕ occuring with
Reynolds number. In light of this controversy, we here approach
this issue as a three parameter problem, attempting to quantify
the peak intensity ϕ in a study where both l

�
and Re are varied.

This set of measurements are summarized in Table 1. We also
complement this data with a compendium of pre-existing re-
sults. For figure 2 we compile data for ϕ from numerous studies
and plot these against given values of l

�
and Reτ. The Karman

number (or friction Reynolds number Reτ) is a useful character-
ization of the flow in this instance since it provides a measure
of the separation between outer and viscous scales, and hence
is a true measure of scale separation. It is also equivalent to the
boundary layer thickness expressed in viscous wall units (δ

�
).

A representation of Reτ is included on Figure 1 as the vertical
dotted line denoting the edge of the boundary layer.

The criteria for inclusion on Figure 2 are as follows. We sought
out quality measurements in the literature (careful attention to
facility, pressure gradient, freestream turbulence etc) made with
single normal-wire hot-wire sensors where l

�
d � 200 (in or-

der to isolate the effects of l
�
d, see Ligrani & Bradshaw [19]).

Certain key data are not included. 1 The data used for the com-

1The data of Ueda & Hinze [32], though oft cited, is not included
due to insufficient l � d. The higher Reynolds number superpipe data

pilation are listed in the table below Figure 2. Since the data are
not usually available in tabulated form, it is often necessary to
take the value of ϕ from a figure (for which we use an in-house
image mapping software). The value of l

�
and Reτ are usually

obtainable from tabulated experimental conditions, otherwise in
the few cases where it is not possible to directly calculate Reτ,
we use an estimate of δ

�
based on the edge of the mean velocity

profile such as the one shown in Figure 1(b). The presentation
of the final compilation on a logarithmic Re axes will tend to be
forgiving of any errors introduced by such estimates. This com-
pilation is by no means exhaustive and we plan to continually
update this database as and when new data become available or
known to us.

Figure 2 shows this compiled data. Clearly when we just com-
pare the peak intensity ϕ with Reτ, as shown in plot (a), there
is a large degree of scatter between studies. However, when the
data are treated as a three-parameter problem, plotting ϕ against
Reτ and l

�
as shown in plot (b), the spread of data seem to lie

rather well on a surface. The meshed plane shown in Figure
2(b) is a best-fit to all of the compiled data listed in the inset
table, obtained by nonlinear least-squares regression fit to the
form,

ϕ � A
�
l
�

log10 Reτ
���

B
�
l
� ���

C
�
log10 Reτ

���
D  (2)

the best fit to which returns the following constants.

A 0 	 0161 B ! 0 	 1079 C 1 	 2759 D 4 	 2699

The prescribed form of this fit is somewhat arbitrary, but at this
stage it seems to provide a reasonable description of the avail-
able data. We would expect experimental scatter about this sur-
face owing to other secondary effects that have not be accounted
for, such as measurement error (which could be greater than� 5% especially if we consider error in determining Uτ), differ-
ences in facility design (‘non-canonical’ boundary layers due to
pressure gradients, elevated freestream intensities, over/under-
tripping etc) or the effects of temporal resolution (due to the
finite temporal response of the anemometer/probe system).

Regardless, in simple terms, figure 2(b) and the fitted surface
given by equation (2) show that the near-wall peak in turbulence
intensity (ϕ) is subject to two primary competing effects. Whilst
ϕ will tend to rise with Reynolds number, the measured value
will drop with increasing l

�
. As a preliminary attempt at fitting

to limited scattered data, the surface given by equation (2) can
explain some interesting trends in past results. If we rearrange
equation 2 with respect to Reτ, we can obtain an expression
for the variation in l

�
necessary to yield a constant value of ϕ

(which we here define as ϕc),

l
� � ϕc ! D ! C log10 Reτ

A log10 Reτ
�

B
(3)

For most facilities, if wire-length l is fixed this implies an ap-
proximately constant l

�
δ (fixed l

�
h and l

�
r for channels and

pipes). Thus as an approximation we can state that l
�

increases
approximately linearly with Reτ.

l
� � lUτ

ν
�#" l

δ $ δUτ
ν
�%" l

δ $ Reτ (4)

The forms taken by equations (3) & (4) are quite similar. Fig-

of Morrison et al.[27] and the very short wires of Willmarth & Sharma
[33] are discounted for similar reasons. We do not include those data of
Österlund [30] which are listed as having d & 1 � 27 � m due to obvious
inconsistencies in the results and the d & 1 � 3 � m data of Hites [11] is
not included, due to the reported calibration drift.
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Figure 2: (a) Reynolds number variation of the peak measured value of the inner-scaled streamwise turbulence intensity (ϕ) for the
various hot-wire experiments. Symbol legend and included studies are listed in the inset table; (b) Same data as three-dimensional plot
against Reτ and l

�
. Meshed surface plane shows best-fit to the compiled data of the form given by equation 2.

ure 3 shows, as a dashed line, equation (4) evaluated for (l
�
δ) =

0.01. The solid line shows equation (3) evaluated for ϕc � 2 	 72,
which is the constant value of ϕ found by Mochizuki & Nieuw-
stadt [24], who compiled experimental boundary layer data and
found no Reynolds number dependence for the peak value of
streamwise turbulence intensity. The symbols plotted on Fig-
ure 3 show zero-pressure gradient experimental boundary layer
data compiled by Mochizuki & Nieuwstadt [24]. It is clear that
these symbols exhibit a general rise in l

�
as Reynolds number

increases (since, in general, it is not possible to continually re-
duce the probe size as the viscous-scale reduces). This rise in l

�
approximately follows the trend predicted by equation 4 for an
(l
�
δ) = 0.01. (The most common wire diameter used in the lit-

erature is 5 � m which, if we assume an l
�
d � 200, gives a total

l � 1 mm. Hence an
�
l
�
δ
�

of 0.01 implies an average boundary
layer thickness δ 4 100 mm, which is certainly of the correct
order for laboratory scale experiments.) It is also clear from
the solid line on Figure 3 that this growth in l

�
with Reynolds

number is very close to that required by equation 3 to return
constant values of ϕ. Thus Figure 3 and equations (3) & (4)
provide a very simple explanation of how past studies, such as
those by Mochizuki & Nieuwstadt [24] and Durst et al. [6] have
erroneously reported no dependance of peak streamwise inten-

sity (ϕ) with Reynolds number. In short, ϕ will tend to increase
with increasing Reτ and reduce with increasing l

�
. However,

experimentally, a side-effect of increasing Reτ is that l
�

is also,
in general, increased. Thus, through sheer bad luck (assuming
an l

�
δ
�

100 which it is shown, is a good approximation for
most laboratory data), it is seen that experimental data can tend
to fall on a region of the surface described by equation 2 that
could give the misleading impression that ϕ is independent of
Reynolds number.

The ‘outer-hump’ in broadband streamwise intensity: Is it
real?

So far we have concentrated our attentions solely on the near-
wall peak in streamwise turbulence intensity ϕ. However, atten-
uation due to spatial resolution also affects measurements away
from the near-wall region. Figure 4 shows a comparison of
two measurements made in a high Reynolds number turbulent
boundary layer (Reτ � 14000) each with very different viscous-
scaled wire-lengths (l

� � 22 and 79). Figure 4(a) shows pro-
files of streamwise turbulence intensity. Measurements from
the larger of the two wires (shown by the dashed lines) exhibit
signs of attenuation out to beyond z

� � 300. Not only has this
attenuation depleted the near-wall peak (the approximate loca-
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tion of which is given by the left-hand vertical dashed line), but
also appears to have uncovered a secondary peak, occurring in
the log region of the boundary layer. Previous high Reynolds
studies have also noted such secondary ‘outer peaks’ (Morrison
et al. [27] & Fernholz et al. [8]). For Morrison et al. [27] the
‘outer hump’ has strongly emerged by Reτ � 19700, for which
a wire with l

� � 76 was employed. For Fernholz et al. [8], the
‘outer hump’ is clearly visible for their Reτ � 25133 data where
l
� � 70.

Closer analysis of the pre-multiplied energy spectra associated
with each wall-normal location can explain the emergence of
this peak. The plot shown in Figure 4(b) is formed by plot-
ting iso-contours through the surface constructed from the one-
dimensional pre-multiplied energy spectra of u fluctuations at
each wall-normal z position. A more detailed explanation of
how these energy maps are formed is given by Hutchins &
Marusic [13, 14]. In these studies it was shown that, with high
enough Reynolds numbers, the energy map has two clear ener-
getic peaks. The peak closest to the wall has a location fixed
in viscous wall-units (at λ

�
x � 1000, z

� � 15) and was termed
the ‘inner site’, encompassing energetic contributions due to the
near-wall cycle. The second peak occurs in the log region, with
a location fixed in outer units (nominally reported at λx � 6δ,
z
�
δ
�

0 	 05 ! 0 	 06), and was termed the ‘outer’ site. It was sug-
gested [13] that this outer site might be the contribution due to
the very long meandering features found to populate the log re-
gion (and termed ‘superstructures’). The location of these two
peaks are shown by the

�
symbols on figure 4(b). Between

these two peaks there is a region of inclined isocontours, where
λx appears to scale with z, indicative of attached eddy type be-
haviour (the line λx � 3z is included in red).

By comparing the two sets of contours, it is clear that the larger
of the two wires (l

� � 79, shown by the dashed contours) has at-
tenuated the small-scale energy. This diminishes the ‘inner site’
and also the attached energy, leaving the ‘outer site’ as the in-
creasingly dominant energetic contribution (this dominance of
the large-scales will increase as l

�
becomes larger). Since the

turbulence intensity shown in plot (a) is essentially the area un-
der such contours, it is easy to see how attenuation due to spatial
resolution can uncover a secondary ‘outer hump’ in the turbu-
lence intensity profiles. Plots (c) and (d) show the premultiplied
energy spectra at wall-normal locations corresponding to the in-
ner and outer energetic sites respectively (shown by the vertical

dotted lines on plots a and b). The wire with larger l
�

has de-
pleted the inner energetic site (a) whilst, at sufficient Reynolds,
number the ‘outer energetic site’ (b) is relatively unchanged.
These results would strongly suggest that, rather than indicating
some new phenomena of boundary layer turbulence, the ‘outer
humps’ found by Morrison et al. [27] & Fernholz et al. [8] are
more likely a symptom of wires with large l

�
spatially filtering

small-scale fluctuations, which in turn will increasingly reveal
the larger scale contribution due to the outer energetic site (the
energetic contribution due to superstructures).

Effects of l
�

not confined to the near-wall

It is important to note that the effects of spatial resolution should
not be considered to be confined merely to the near-wall region.
Whilst the inner energetic site exhibits the most noticable at-
tenuation, there is also significant attenuation throughout the
attached regime, at least to z

� � 300 for wires with l
� � 79.

Recent measurements with an l
� � 140 wire (not shown here)

indicate that for very long wires, this attenuation can extend
to z
� � 1500. Clearly we must be cautious when attempting

to state wall-normal locations or wavelengths (λx) above which
effects due to spatial resolution will be negligible. Based on a
knowledge of the energy maps shown in figure 4(b) we would
expect attenuation due to spatial resolution to be a complex
function of z

�
, l
�

and Reτ (see Hutchins & Marusic [13, 14]). It
is unlikely that so complex a function will lend itself to simple
attempts at defining a height (zmin) above which spatial reso-
lution errors will be negligible. In the past such attempts have
been made (usually attempting to describe zmin as a linear func-
tion of l

�
).

Conclusions

The magnitude of the near-wall peak in inner-scaled broadband
intensity ϕ is subject to the competing effects of Reynolds num-
ber and l

�
. As Reynolds number is increased, there is an in-

creasing presence of large-scale energy in the near-wall region
(see [14, 13]), whilst the small-scale energy remains approxi-
mately the same. Thus, the net effect of increasing Re is an
increase in the recorded value of ϕ. As l

�
is increased, on

the other hand, the recorded small-scale fluctuation becomes
increasingly attenuated (whilst the recorded large scales are ef-
fectively unmodified, see figure 4d). Thus the net effect of in-
creasing l

�
is a reduction in the measured near-wall peak (ϕ).

Consideration of these competing effects provides some expla-
nation for the wide scatter exhibited by previous measurements
of ϕ reported in the literature (see figure 2). When ϕ is plotted
against l

�
and Reτ, the available data seem to lie approximately

within a common surface. A preliminary functional form is pro-
vided to describe this surface (2).

We show that the ‘outer peak’ in inner-scaled broadband
intensity is most likely a symptom of spatial resolution issues.
Certainly no outer-peak is present up to Reτ � 14000 for well-
resolved turbulent intensity profiles made in the HRNBLWT
facility. Only when the length of the wire is increased beyond
l
� �

50 ! 60 do we begin to see signs of a secondary peak in
the broadband intensity profile (not shown here, but see [29]).
Analysis of fully mapped energy spectra (figure 4b) indicate
that the larger wires attenuate the smaller-scale fluctuations.
It is noted that these attenuated small-scales are not solely
confined to the near-wall region, and extend throughout the
log region in the form of attached eddies. Thus the effects of
spatial resolution can extend a surprising distance from the
wall. These far-reaching effects lead to the secondary peaks
as noted by [27] and [8], which arise when the small-scale
fluctuations are attenuated by the larger wires, to leave just the
energetic contribution due to the very large scales that inhabit
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Figure 4: Comparison of two different wire lengths (solid) l
� � 22; (dashed) l

� � 79 at Reτ
�

14000. (a) streamwise turbulence
intensity profiles; (b) isocontours of premultiplied streamwise energy spectra kxφuu. Vertical dashed lines show z

� � 15 and z
�
δ � 0 	 05.

Premultiplied energy spectra in these locations are given in plots (c) and (d) respectively.
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the log region. The secondary peak in broadband intensity is
effectively just the large-scale contribution in the log region, in
the absence of the superimposed small-scale activity.
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