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Abstract
Pigs are utilized in pipelines to perform operations such as 
dewatering, cleaning, and internal inspection for damages. 
Transient motion of pigs through gas pipelines has been 
simulated numerically in order to help engineers predict the 
variables related to pig motion such as estimating its speed, 
required driving pressure, and the amount of fluid bypass 
through the pig. In this paper, the continuity and linear 
momentum equations for compressible gas flows were 
discretized by finite difference method based on moving and 
staggered grids. These equations were solved together with 
dynamic equation for pig movement and the equation for 
modeling bypass flow. Besides, gas was considered both 
ideal and real. Test cases representing typical pigging 
operations in pipelines with or without flanges and branches 
were studied using the numerical model developed. The fluid 
flow and pig behavior predicted by the model have a 
reasonable behavior.

Introduction
A large variety of pigs has now evolved to perform 
operations such as cleaning out deposits and debris, locating
obstructions, liquid and gas removal, and internal inspection
for damage or corrosion spots in pipelines. Pigging helps 
keep the pipeline free of liquid, reducing the overall pressure 
drop, and thereby increasing the pipeline flow efficiency.
Pipeline pigs may be broken down into two fundamental 
groups: conventional pigs, which perform a function such as 
cleaning or dewatering, and intelligent pigs, which provide 
information about the condition of a pipeline. All intelligent 
pigs need a clean line for optimum performance, and this
requires the development of highly effective conventional 
pigs and pigging programs. Engineers have to consider many 
parameters for designing a pigging operation such as the 
effects of velocity, and determination of optimum pig speeds;
design of pigs capable of performing in widely differing 
diameters; the effects of by-pass and optimum by-pass 
configuration; the effects of the differential pressures across 
the seals. However, most of the available knowledge is based 
on field experience. Hence, selecting the best pig, often 
involves some guesswork, and, consequently, a high degree 
of uncertainty.
The speeds recommended for routine, conventional, on-
stream pigging are 1 to 5m/sec for liquid lines and 2 to 
7m/sec in gas lines [1]. Good estimations of pig velocity and 
the time pig reaches the end of pipeline will help engineers 
design and perform a suitable pigging operation.
We can find very few papers dealing with the numerical 
simulation of pig motion in gas and liquid pipelines. Sullivan 
[2], Haun [3], treat the dynamics of simplified pigs in gas 
lines. Short [4] conducted an experimental research program 
aimed at the understanding of the fundamental problems 
related to pipeline pigging. A simple model to predict the pig 
motion driven by incompressible fluids under steady-state
conditions was presented by Azevedo et al. [5]. Vianes
Campo and Rachid [6] studied the dynamics of pigs through

pipelines using the method of characteristics. Recently, 
Nieckele et al. [7] investigated isothermal pigging operations 
through gas and liquid pipelines. In addition, the contact 
forces developed by disk pigs and the pipe wall were 
predicted by a post-buckling finite element analysis of the 
discs.
This paper deals with simulation and modeling of pigs 
through gas pipelines. The equations governing the 
conservation of mass, linear momentum for the fluid were 
numerically solved by a finite difference method based on 
staggered moving grids these equations were coupled with an 
equation that describes the pig dynamics. Mathematical 
model for the prediction of the bypass flow through pigs was
based on Nieckele et al. [7]. In order to simulate more 
realistic pigging operations, pigging under high pressures 
around 90 bars and the deviation from ideal gas law was 
investigated. Gas consumption through pipeline branches was 
also considered. 

Governing Equations
Equations of mass, momentum, state and dynamic of pig are 
solved simultaneously. The flow is considered to be 
isothermal. Fig. 1 represents an elementary section of a 
variable area duct. The centerline of the duct is inclined with 
the horizontal at an angle β . It is assumed that the area 
change over the length dx is small, so the flow is essentially 
one-dimensional. The density, velocity, pressure and area are, 
respectively, ρ , V, P, A. The acceleration of gravity vector is 
represented by g, and sτ is the viscous stress acting at the 
wall.

Figure 1. Control volume for one-dimensional flow analysis

For the control volume of Fig. 1, the mass conservation 
equation can be written as ( ). .c v in outm t m m∂ ∂ = −� � , where

Adxm vc ρ=.. is the mass of fluid in the control volume and 
m�  is the mass flux through the boundaries. Thus, the 
continuity equation can be written in the following form:
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Neglecting higher order derivatives and using the definition 
of material derivative, Eq. (1) can be rearranged in the 
following form:
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It should be noted that when gas pressure is high, pipe 
deformation is not negligible. In that case, the effects of pipe 
deformation due to pressure variations along the flow will be 
incorporated in the mass conservation equation (2). 
Considering the pipe as a cantilever beam, we can relate 
pipe’s area change to its properties by the following relation 
(see Wylie and Streeter [8]): 
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where e is the pipe wall thickness, E the Young modulus of 
elasticity of the pipe material, and υ  the Poisson ratio.
Isothermal bulk modulus of the fluid is defined 
as ( )TPK ρρ ∂∂= , rearranging this equation we have:
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Substituting equations (3) and (4) into Eq. (2), one obtains:
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where ( ) )/(11 2 eEKD υξ −+= .
In practical pigging operations, it is usual to have local gas 
consumption through some of the branches of the pipeline. In 
order to model this situation, a sink term can be considered in 
the continuity equation (5) at the location of each branch that 
diverts gas from the main line.
The momentum conservation equation can be written as
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where ( )Vm�  is the momentum efflux through the boundaries. 
Substituting proper relations for the terms of Eq. (6) and 
neglecting higher order derivatives, we have:
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where mP  is the wet perimeter of the control volume section.
The viscous force can be written in terms of a hydrodynamic 
friction coefficient f, and assuming 1cos ≈α , the linear 
momentum equation becomes:
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where f, the hydrodynamic friction coefficient, depends on 
the Reynolds number, µρ DV=Re , and, in the turbulent 

regime, also on the pipe relative roughness Dε . The friction 
coefficient was evaluated by assuming fully developed flow. 

Thus, for a laminar regime, 2300Re < , it was specified as
Re64=f , while for the turbulent regime, 2300Re ≥ , the 

friction factor was approximated by Miller’s correlation (Fox 

and McDonald [9]), ( )[ ]{ } 29.0Re74.57.3log25.0
−

+= Df ε .
Using continuity equation (2) for the left hand side of Eq. (8) 
in conjunction with equation Eq. (3), we have:
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where ( ) 01 2
≈

−
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The coupling of the pig motion with the fluid flow in the 
pipeline was obtained through a balance of forces acting on 
the pig. The force balance on the pig can be written as:

( )1 2
pig

c

dV
m P P A mgSin F

dt
β= − − − (10)

where pigV is the pig velocity, m the pig mass, 1P and 2P
the pressure on the upstream and downstream faces of the 
pig, β the angle of the pipe axis with the horizontal.
The term cF  represents the axial contact force between the 
pig and the pipe wall, acting in the direction of the pipe axis
and opposing the pig’s motion. The contact force can be
allowed to vary along the pipe length. This variation may be
caused by area changes along the pipe or due to changes in 
the pipe/pig friction coefficient. When the pig is not in 
motion, the contact force varies from zero to the maximum 
static force statF , in order to balance the pressure force due to 
the fluid flow. Once the pig is set in motion by the flow, the 
contact force assumes the constant value, dynF , representing
the dynamic friction force that is generally different from the 
static force. In the present model, the contact force is 
considered as being independent of the pig velocity.
The following relation relates the bypass flow to the pressure 
difference across the pig:

2

1 2 2
h

P
VP P K ρ− = (11)

where PK is the localized pressure drop coefficient and hV
is the fluid velocity at the bypass hole, measured relatively to 
the moving pig. Assuming the flow to be locally 
incompressible in the vicinity of the pig, a mass conservation 
equation can be written for a control volume moving with the 
pig. The pressure drop across the pig, can then be written as:
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(12)

where hA is the bypass hole cross sectional area. Note that 
Q/A is the average fluid velocity approaching the pig.

Fluid Properties. In addition to an ideal gas law for the 
density variation, a real gas model was employed. Equation 
of state for isothermal flow of an ideal gas 
is ( )refgasTRP ρ= , where gasR  is the gas constant, and refT
the reference temperature. Therefore, isothermal bulk 
modulus of gas will be equal to its pressure:

( )T
K P Pρ ρ= ∂ ∂ = (13)

For modeling flow of a real gas, density variations and 
isothermal bulk modulus of the fluid were calculated via
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routines provided by NIST1 Reference Fluid Thermodynamic 
and Transport Properties - REFPROP Version 7.0 (see [10]).

Numerical Method
Moving Grid. Since the pig moves in the computational
domain and both sides of the pig deforms with the pig 
movement, it is convenient to employ a coordinate system 
that stretches and contracts in the pipe, depending on the pig 
position.
The grid velocity gv  giving a regular numerical grid at each 

instant is defined by:

( )
( )

0pig pig
pig

g

pig pig
pig

x V ;                 x X
X

v (x,t)
L x

V ;        X x L
L X

 ≤ ≤
=  − ≤ ≤
 −

(14)

where L  is the pipe length, pigX  pig position, and x  the 
position of each grid point.
The absolute velocity V is equal to gvV +

~  where V~ is the
relative velocity. To transform the conservation equations, 
the convective fluxes xV ∂

∂ have to be replaced by xV ∂
∂~ .

The set formed by equations (5), (9), (10) and (11), were 
discretized by a finite difference method. A staggered mesh 
distribution was selected to avoid unrealistic oscillatory 
solutions, as recommended by Patankar [11]. The equations 
were integrated in time using a fully implicit method and the 
space derivatives were approximated by the central 
difference method around the mesh point.
The resulting coefficient matrix is penta-diagonal. Since, the
Thomas algorithm for tri-diagonal matrices (TDMA) can be 
extended to the solution of penta-diagonal systems, a direct 
penta-diagonal matrix algorithm (PDMA) described in [12] 
was used.
At each time step the set of equations were solved iteratively
until convergent solutions were achieved. The iterations were
terminated after overall accuracy had fallen below a 
tolerance. The time interval was sufficiently small to obtain 
solutions not influenced by the time step.

Adaptive Mesh. The total number of grid points inside the 
pipe was maintained constant in the numerical calculations of 
the flow field upstream and downstream of the pig. However, 
as the pig moved along the pipe, it was necessary to rearrange 
the node distribution. The number of grid points upstream 
and downstream of the pig was made proportional to the 
length of the pipe at each side of the pig. Note that when 
nodes had been transferred from downstream to upstream, all 
data for the grid points was interpolated before proceeding to 
the next time step. Further, the mesh was concentrated near 
the pig to better resolve the flow variables at this location.

Pigging in a Gas Line with Flanges
The pipeline under consideration is 500 m long and 
horizontal. It is non-rigid with a reference diameter equal to 
500 mm . It has two inward protruding flanges, located at 100
and 400 m from the inlet section of the pipe. The wall 
thickness e is 2.5 mm , and its roughness ε  is 0.05 mm . The 
pipe’s Young modulus of elasticity, E  is 200 GPa  and its 
Poisson coefficient, µ is 0.3.

1 National Institute of Standards and Technology

At time equal to zero, air is pumped at the inlet, taking 10s to 
achieve a mass flow rate of 1.0 sKg , which is maintained 
constant. The discharge pressure is kept constant and equal to 
the atmospheric pressure. Air was considered an ideal gas 
with the gas constant equal to ( )KgKJ287 . The temperature 
was maintained at 294 K and the absolute viscosity fµ was 

kept constant and equal to 19 sPa.µ .
The pig had a mass equal to 5 Kg . The static contact forces 
were: NFstat 1000= and NFstat 4000= , for the pipeline and 
for the flanges respectively, while the dynamic forces were 

NFdyn 970=  and NFdyn 3950=  for the pipeline and for the 
flanges.
In order to obtain solutions not influenced by the time step
and grid spacing , time interval and the number of nodes were
set to 0.01 s  and 100 respectively.

Figure 2. Pig velocity versus pig position for pipeline with
flanges

Figure 3. Time variation of pig position for pipeline with 
flanges

Figure 2 illustrates the pig velocity versus pig position, while
Fig. 3 presents the variation of the pig position with time. 
Figure 4 presents the pressure distribution along the pipeline 
for several time instants. By examining all these figures 
simultaneously, it can be seen that the pig, which is initially 
at rest, starts moving as air is injected into the pipeline. It 
reaches a constant velocity around 4.0 sm , moving until it 
reaches the first flange. There, the pig stops moving, and 
pressure upstream of the pig starts to build up 
( sts 6.3330 ≤≤ ) until the pressure force across the pig
reaches the value corresponding to the static contact force at 
the flange. As the pig passes the flange, there is a substantial 
drop in the contact force and the pig attains a very high 
velocity level due to the high pressure difference across it, 
which was developed while the pig was trapped at the flange 
region. As the pig moves along the middle section of the 
pipeline, there is an expansion of the gas, resulting in a 
significant pressure drop. The pipeline/pig contact force 
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slows down the pig. Before the pig stops, pressure builds up 
and the pig’s velocity increases abruptly, leading to the 
second expansion of the gas. After the pig stops at 37.4 s , the 
pressure builds up again and the pig is driven to the second 
flange. However, pig’s speed increases and decreases until it 
reaches a steady state value around 4.0 sm , which is 
corresponding to 1.0 sKg mass flow inlet. The pig is, once 
more, stopped by the higher contact force at the second 
flange location. Another pressure buildup period is verified 
( sts 118104 ≤≤ ) until the pig overcomes the flange contact 
force. After released from the second flange, the pig reaches 
an even higher velocity level, because the volume of 
pressurized gas upstream of the pig is now higher than when 
the pig was released from the first flange. As the pig moves 
along the last section of the pipeline, the upstream gas 
pressure is seen to decrease.

(a)

(b)
Figure 4. Pressure distribution along pipeline at different time 

steps; pipeline with flanges

Pigging with Bypass Pigs in a Pipeline with a 
Branch
This case consists of an isothermal air flow at 300 K inside a 
500 m pipeline which has been sketched schematically in 
Fig. 5. The inlet pressure is maintained constant and equal to 
500 KPa , while the mass flow rate at the exit is imposed. 
Initially there is no flow in the pipe, increasing linearly with 
time taking 20 s  to reach 0.3 sKg , and is kept constant. A 
branch of pipe is considered at mx 250= with a constant 
mass flow rate of 0.05 sKg . Air is considered ideal with the 
same properties as “Pigging in a Gas Line with Flanges” 
case.

Figure 5. Pipeline schematic

The following data were used in the computations: pipeline 
diameter: 0.1 m  (other pipe parameters are the same as the 
previous case), bypass hole area: 0.0003 2m , localized 
pressured drop coefficient at the bypass: 1.5, pig mass: 3 Kg ,
static and dynamic contact forces: 50 N  and 40 N , number 
of nodes: 100, time interval: 0.01 s .
Results concerning the pig dynamics, which are presented in 
Figures 6(a) and (b), show that the pig does not move, while 
the rising pressure force is not sufficient to overcome the 
static contact force value. When this value is attained, the pig 
starts moving with a high acceleration at st 25.6= . The pig 
velocity increases by increasing the mass flow rate until it 
reaches a steady state value around 6.5 sm . At 

mx 100= where the pig enters pipe section (2), the velocity 
increases due to gravitational acceleration. However, the 
speed drops again when the pig enters horizontal pipe section 
(3) at mx 200= . The pig gains its steady speed value of 
6.5 sm  until it reaches the branch pipe. By passing the 
branch pipe, pig speed decreases abruptly due to pressure 
drop behind the pig. Under this condition, this velocity 
reaches its new steady value of 5.5 sm . As the pig enters 
pipe section (4), gravitational force acts in the opposite 
direction of the pig motion, resulting in a drop in pig 
velocity. However, by entering the horizontal pipe section 
(5), the speed rises again to steady value of 5.5 sm .

Figure 6(a). Pig velocity versus pig position for pigging with 
bypass pigs

t = 30s

t = 33.5s

t = 35s

t = 37s

t = 90s

t = 120s

t = 117s

t = 128s

t = 105s
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Figure 6(b). Time variation of pig position for pigging with 
bypass pigs

Pigging with Bypass Pigs, Comparison of Real and 
Ideal Gas
In this case, simple pigging simulation with a bypass pig in a 
50 meter long horizontal pipe has been considered in order to 
analyze real and ideal gas effects. Air at high pressure of 
9.0 MPa is used as the working fluid. Mass flow rate 
increases linearly with time from 0.0 to 4.0 sKg in 10 s  and 
then kept constant. All other parameters are the same as the 
previous case.
Results are presented in Fig.7. An observation of this figure 
shows that there is no significant difference between real and 
ideal gas solutions. In both cases, pig attains almost the same 
steady velocity value of 4.6 sm  after 10 s . The traveling 
time of the pig is 16.37 s for real gas case which is 0.1 s
more than the ideal gas case. It should be noted that the 
computer run time of the program for real gas case is 
considerably greater than for ideal one. Thus, using real gas 
mode for pigging simulation is not justified.

Figure 7. Pig velocity versus pig position, comparison 
between real and ideal gas

Conclusions
This paper presented a study aimed at simulating the dynamic 
behavior of pigs in pipelines driven by gas. The basic 
equations governing conservation of mass and linear 
momentum for the fluid were numerically solved, coupled 
with the linear momentum equation for the pig and models 
for bypass flow through the pig. The results obtained 
concerning pig velocity and acceleration, and pressure fields
provide a better understanding of the complex behavior of
pig motion through pipelines.
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