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Abstract

Numerical issues associated with simulating strong blast waves
in high temperature flows in a turbulent background have been
addressed effectively. Spherical energy deposition in both lam-
inar and turbulent flows is considered. A predictor–corrector
based shock capturing scheme is implemented along with a base
spectral discretization scheme to simulate strong blast waves
generated in the flow. The shock capturing scheme is extended
for high temperature flows in equilibrium. Formulation of high
temperature eigen vector matrices for 3–D Euler equations is
presented for a generalized coordinate system. A logarithm for-
mulation of the continuity equation is used to address stability
issues related to very low densities in the core. A non-linear
limiter has been implemented to eliminate excessive dissipation
of the background turbulence due to shock capturing.

Introduction

There are important practical problems that involve very
high temperature blast waves propagating through a turbulent
medium. Examples of such problems are laser energy deposi-
tion in a turbulent background and discharge spark formation
in a turbulent background. Propagation of strong blast waves
in laminar flows has been studied theoretically [15, 13], exper-
imentally [5, 10] and computationally [14, 7]. These problems
involve stellar explosions [9], chemical explosions [1], laser
energy deposition [5, 3] and energy deposition by a discharge
spark [12].

The objective of this paper is to describe some of the numeri-
cal issues involved with accurate simulation of high temperature
blast waves in a turbulent background. Specifically our interest
is to simulate laser energy deposition in turbulent flows. Here,
laser energy is deposited in a small volume of a gas. This re-
sults in formation and propagation of a blast wave through the
background turbulence. Depending on the initial density of de-
posited laser energy, the initial temperatures could be as high as
50,000K and the blast wave generated can initially have Mach
numbers as high as 8.0. Also, energy deposition results in sharp
expansion of the core. Hence, densities in the core could be
very low. Typically the minimum densities in the core could
be 2 to 3 orders of magnitude smaller than the density of the
surrounding fluid.

The Navier–Stokes equations with suitable modifications can be
used as the governing equations. Presence of high temperatures
lead to a number of reactions occurring in the flow e.g ioniza-
tion, dissociation, recombination, charge exchange and charge
transfer. Most recent simulations [8, 3] use a detailed chemistry
model to simulate the conditions of chemical non–equilibrium
existing in the flow. However these simulations are computa-
tionally very intensive. Hence only two dimensional simula-
tions have been performed. A simpler equilibrium based model
has been used for the simulations in this paper. The model does
not use additional source terms in the Navier–Stokes equations.
However the effect of all the above chemical reactions are taken
into account by using equilibrium data for the thermodynamic
quantities to obtain a closure for the system of governing equa-

tions. Thus the simulations are less expensive computationally
and three dimensional simulation is possible even at the reso-
lution required to simulate these high temperature flows. The
three dimensional simulation is especially necessary for simu-
lation of turbulence in the background.

Simulating such flows involve three primary numerical chal-
lenges: (i) accurate simulation of strong blast waves, (ii) stabi-
lization of the solution in regions of low densities in the core and
(iii) simulation of strong blast waves without excessive dissipa-
tion of the background turbulence. These issues are addressed
in the following sections.

A parallel Fourier spectral solver with shock capturing capabil-
ity has been developed. Given the fact that the boundary condi-
tions are periodic, to allow the blast waves to propagate to very
large distances the spectral method was developed for a domain
whose size is adaptively increased in time. This is done by in-
terpolating the solution from a smaller to a larger domain using
a spectral interpolation scheme and is essential to study the long
time evolution of the core.

Simulation methodology

The governing equations are the continuity, and compressible
Navier–Stokes equations applied to a real gas,
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where all the variables are non–dimensionalized with respect to
their initial background values.

xi = xi
∗/L0

∗, ui = ui
∗/c0

∗, t = t∗c0
∗/L0

∗,

ρ = ρ∗/ρ0
∗, p = p∗/ρ0

∗c0
∗2, T = T ∗/T0

∗

µ(T ) = µ(T )∗/µ0
∗, κ(T ) = κ(T )∗/κ0

∗. (4)

Here, the subscript ‘0’ denotes initial background values and the
superscript, ‘*’ denotes dimensional variables. L∗

0 is the length
scale and is obtained by comparing the non–dimensional size
of the energy spot used in the simulations to its actual dimen-
sional size. c∗0 is the speed of sound based on initial background
temperature; i.e.
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Figure 1: (a) Variation of the coefficient of viscosity µ with temperature T . (b) Variation of the coefficient of thermal conductivity κ
with temperature T .

c0
∗ = (γ0R0

∗T0
∗)1/2. (5)

µ(T )∗ and κ(T )∗ are dimensional coefficients of viscosity
and thermal conductivity obtained by assuming an equilibrium
model for air (figure 1).

The equation of state is

p = ρR(T )T, (6)

where

R(T ) = R∗(T )/γ0R0, (7)

and the variation of R∗ with temperature is shown in figure 2b.
The total energy is related to internal energy and kinetic energy
as

ρeT = ρe +
1
2

ρuiui. (8)

and temperature is obtained from internal energy using the equi-
librium dependence of internal energy on temperature shown in
figure 2a.

The Reynolds number and Prandtl number are given by

Re = ρ0
∗c0

∗L0
∗/µ0

∗, Pr = µ0
∗cp0

∗/κ0
∗. (9)

cp0
∗ is the specific heat at constant pressure at T ∗ = T0

∗.

The Navier–Stokes equations are solved using Fourier methods
to compute the spatial derivatives. A collocated approach is
used, and the solution is advanced in time using a fourth order
Runge–Kutta scheme. The skew–symmetric form of the con-
vection terms is used to suppress aliasing errors resulting from
the nonlinear convection terms [2].

Numerical challenges

Shock capturing

Recall that a strong shock wave propagates through the flow
domain, when energy is added instantaneously. Experiments in
laser induced breakdown [16] show that the maximum temper-
ature in the core is very high. This leads to sharp gradients in

the flow variables. Since the flow solver uses spectral meth-
ods for spatial discretization, resolving these sharp gradients re-
quires a highly refined mesh. The computational cost therefore
increases significantly with increasing core temperatures. The
Fourier spectral method is therefore combined with a shock cap-
turing scheme proposed by [17], to avoid resolution of the shock
thickness.

The shock capturing scheme is based on the finite volume
methodology, and is applied as a corrector step to the Fourier
discretization used in this paper. In the first step, the predicted
form of the solution vector is obtained using Fourier methods as
discussed in the previous section. This solution vector is then
corrected using the filter numerical fluxes obtained by using a
characteristic based filter

Un+1 = Ûn+1 +∆t
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The filter numerical flux vector is of the form

F̃?
i+1/2, j,k =

1
2

Ri+1/2, j,kφ?
i+1/2, j,k (11)

where R is the right eigen vector matrix. The elements of φ? are
denoted by φl? and are given by

φl?
i+1/2, j,k = κθl

i+1/2, j,kφl
i+1/2, j,k (12)

The parameter κ is problem dependent and lies between 0.03
and 2 [17]. κ = 1.0 has been used in the simulations. The func-
tion θl

i+1/2, j,k is the Harten switch [6] and depends on the Left

eigen vector matrix L. The formulation used for φl
i+1/2, j,k is

given by the Harten–Yee upwind TVD form [17].

However for high temperature flows, the eigen vector matrices
R and L need to be computed appropriately. The specific heats
at constant pressure and volume CP and CV are no longer con-
stants but depend strongly on temperature. Also, the internal
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Figure 2: (a) Variation of internal energy e with temperature T , (b) Variation of R with temperature T .

energy and enthalpy can no longer be obtained from the simple
relations

e = CV T ; h = CPT (13)

The sound speed is no longer obtained by

c = (γRT )1/2 (14)

and R no longer remains constant, but becomes a function of
temperature (figure 2b). Thus, to compute the eigen vector ma-
trices, the Jacobian matrix ∂F

∂U needs to be recomputed. Here F
denotes the flux vector

F̄ =




ρvn
ρuvn + pnx
ρvvn + pny
ρwvn + pnz

ρh0vn




and U denotes the vector of the conserved variables

Ū =




ρ
ρu
ρv
ρw
ρe0


 .

vn = unx + vny +wnz (15)

and

nx
2 +ny

2 +nz
2 = 1. (16)

h0 is the total enthalpy given by

h0 = h+ ek, (17)

where h is enthalpy and is given by

h = e+ p/ρ. (18)

The equation of state for the gas is given by

p = ρR(T )T. (19)

Then the elemental change in pressure d p can be written as

d p = RTdρ+ρ
(

R+T
dR
dT

)
dT. (20)

Now since e = e(T ),

dT =

(
dT
de

)
de (21)

where the internal energy e can be written in terms of the
conservative variables ui. Using the above relations the
generalized Jacobian matrix can be computed as

J =




0 1
−uvn +(RT −A(e− ek))nx unx + vn −Aunx
−vvn +(RT −A(e− ek))ny vnx−Auny
−wvn +(RT −A(e− ek))nz wnx−Aunz

−e0vn−Avn(e− ek) e0nx +RTnx− vnAu

0 0 0
uny−Avnx unz−Awnx Anx

vny + vn−Avny vnz−Awny Any
wny−Avnz wnz + vn −Awnz Anz

e0ny +RTny− vnAv e0nz +RTnz− vnAw vn(1+A)




where
e0 = e+ ek (22)

is the total energy and ek is the kinetic energy given by

ek =
1
2

uiui. (23)

The factor A is given by

A =

(
R+T

dR
dT

)
dT
de

. (24)

Note that evaluation of these Jacobian matrices requires the
variation of e and R with temperature. This can be obtained
for air assuming it to be composed of several species present
under conditions of chemical and thermal equilibrium (figure
2).

The generalized eigen values of the above matrix are obtained
as :
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Figure 3: (a) Comparison of c1 with data for speed of sound,
: speed of sound obtained from data, : computed

speed of sound c1, : c = (γ0R0T )1/2

λ =
(

vn− c1, vn, vn + c1, vn, vn
)

where the modified speed of sound c1 is given by

c1 = ((1+A)RT )1/2. (25)

Note that c1 reduces to c for low temperatures and the Jacobian
matrix reduces to the low temperature Jacobian. The modified
sound speed depends on the variation of e and R with T through
the factor A. c1 has been computed and compared to data for
speed of sound obtained assuming air as a mixture of multiple
species in equilibrium (figure 3). Reasonable comparison is ob-
tained up to T ∗ = 15000K.

The right eigen vector matrix R can be obtained by solving the
system of equations

[J]Ri = λiRi (26)

where λi are the individual eigen values and Ri are the eigen
vectors. Define a set of variables e1 and e2 such that

e1 =
c1

2

A(A+1)
(27)

and

e2 = e− e1. (28)

Also define ek
∗ such that

ek
∗ = ek− e2. (29)

Using these new variables a possible set of the right eigen
vector matrices are obtained as

R1 =


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1 1 1 0 0
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∗ h0 + c1vn wnx−unz vnz−wny


 .

Then the corresponding set of left eigen vector matrices can be
obtained as

[L] = [R]−1, (30)

and they are given by

L1 =
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,
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

.

The right and left eigen vector matrix pairs along the x,y and
z directions for a Cartesian coordinate system can be obtained
from the above formulation by using suitable values of vn, nx,
ny and nz.
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Figure 4: (a) Contours of pressure at t = 0.2 showing propagation of blast wave in flow at rest, (b) Radial profiles of the density at three
different instants of time showing formation and propagation of a spherical blast wave, (c) Variation of shock Mach number with time

: ∆T0 = 30, : ∆T0 = 45 , : ∆T0 = 60.
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Figure 5: (a) Minimum values of density in the core for ∆T0 = 30,45 and 60, (b) Radial profiles of density in the core at three successive
time instants for ∆T0 = 30 showing that the simulation becomes unstable without the logarithmic formulation of the continuity equation.

Logarithm formulation of the continuity equation

When laser energy is added to a flow at rest, there is noticeable
expansion at the core. This results in very small values of den-
sity at the core. When the continuity equation was advanced in
time with density as the dependent variable, the solution was
found to become unstable. It was therefore decided to solve for
the logarithm of density as the variable. Define

v = logρ ⇒ ρ = ev. (31)

The continuity equation becomes

∂v
∂t

+ui
∂v
∂xi

=−
∂ui

∂xi
. (32)

Note that ρ is always positive when computed as ev, even for
very small values of ρ. The logρ formulation of the continuity
equation therefore makes the solution stable in regions of very
low density.

Logarithm formulation of the continuity equation leads to non–
conservative formulation of the Navier–Stokes equations. How-
ever the predictor–corrector based formulation of the shock cap-
turing scheme used allows us to implement shock capturing
even for the non–conservative system of equations.

Results

Spherical energy deposition

A spherical region of the flow is heated at the center of the
domain by increasing the temperature and pressure instanta-

neously at constant density. The initial temperature distribution
has a Gaussian profile:

T −1︸ ︷︷ ︸
∆T

= (T0−1︸ ︷︷ ︸
∆T0

)e−r2/r2
0 (33)

where the temperatures are non-dimensionalized by the ambi-
ent temperature. ∆T is the local temperature excess over the
ambient value, and ∆T0 is the maximum temperature excess at
the core. r is the radial distance from the center and r0 is the
cut–off radius for the Gaussian profile, chosen to be π/4 in a
domain of 2π.

The initial energy deposited, ∆E can be related to ∆T0 by inte-
grating,

∆E =
� ∞

0
ρ∞e(∆T )4πr2dr, (34)

where e(∆T ) is obtained from figure 2a.

Simulation results are obtained for ∆T0 = 30,45 and 60. These
temperatures correspond to non dimensional energies ∆E =
767,1132 and 1651 respectively deposited in the flow domain.
Figure 4a shows contours of pressure at t = 0.2 for a maximum
temperature excess of 30 in the core. A spherically symmetric
shock front is seen to propagate, compressing the flow ahead of
it, while the flow behind it expands. Since the problem is spher-
ically symmetric, mean values of the flow variables are com-
puted in a radially symmetric manner and plotted as a function
of radial distance from the center.

Figure 4b shows radial profiles for density at three different in-
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Figure 6: (a) Turbulent kinetic energy in time for isotropic turbulence, (b) Energy spectrum at t/tτ = 5.0, (c) Statistics for vorticity
fluctuations, without shock capturing, with shock capturing, with shock capturing and nonlinear limiter.
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Figure 7: (a) Turbulent kinetic energy in time, (b) Energy spectrum at t/tτ = 5.0, without logρ formulation and without shock
capturing, with logρ formulation and without shock capturing, without logρ formulation and with shock capturing, • with
logρ formulation and with shock capturing.

stants of time for ∆T0 = 30 . Note that there is an initial period
of time during which the intensity of the shock front increases
with time, indicating formation of the shock. Once shock for-
mation is complete, the shock wave propagates radially into the
background gas, its strength decreasing as a result.

Figure 4c shows the variation of shock Mach number in time for
∆T0 = 60, 45 and 30. The shock Mach number can be computed
using the relation

Us =
γ+1

4
U +((

γ+1
4

U)2 + c∞
2)1/2, (35)

for the shock velocity Us. Here, U is the velocity behind the
shock front and c∞ is the speed of sound ahead of it. The initial
steep increase in the shock Mach number depicts shock forma-
tion. The later gradual decrease in shock Mach number depicts
the radial propagation of the shock. The shock Mach number
attains a maximum value at the end of shock formation. The
values of shock Mach number increase with increase in energy
deposited. Note that the maximum shock Mach number varies
from 3.77 to 7.45 for ∆T0 changing from 30 to 60. Simulation
of these strong blast waves is not possible without incorporation
of the shock capturing scheme.

Figure 5a shows the minimum values of density in the core for
∆T0 = 30,45 and 60. Note that the densities in the core are
very low owing to rapid expansion during the shock formation
process. Also the minimum value of density decreases with in-
crease in ∆T0. Figure 5b shows density in the core at three suc-
cessive instants of time obtained from a solver that does not use
the logarithm formulation of the continuity equation. The low

densities in the core result in the solution becoming unstable.
Using the logarithm formulation, density is forced to be posi-
tive at all times and so a stable solution is obtained.

Isotropic turbulence

Direct numerical simulation of isotropic turbulence was per-
formed under conditions corresponding to past DNS by Blais-
dell et al. [2]. The initial velocity fluctuations are isotropic and
divergence–free, while initial fluctuations in pressure, temper-
ature and density are assumed to be zero. The initial velocity
fluctuations are generated using Rogallo’s method [11]. The
Fourier coefficients of the initial velocity fields are given by

û =
αkk2 +βk1k3

k(k1
2 + k2

2)1/2
e1 +

βk2k3−αkk1

k(k1
2 + k2

2)1/2
e2−

β(k1
2 + k2

2)1/2

k
e3

(36)
where

α(k) =
E(k)

4πk2

1/2

eiθ1 cos(φ), β(k) =
E(k)

4πk2

1/2

eiθ2 cos(φ). (37)

Here θ1, θ2 and φ are random numbers from 0 to 2π, and ei
denote the unit vectors along the three coordinate directions.
The initial energy spectrum is E(k) ∼ k4e−k2

and peaks at k0 =
5. The initial fluctuation Mach number Mt = 0.3 and Taylor
micro scale Reynolds number Reλ = 70.

The effect of the shock capturing scheme on time evolution of
this turbulent field is studied. Figure 6a shows time evolution
of the turbulent kinetic energy. Note that the added dissipation
from the shock capturing results in under–prediction of the tur-
bulent kinetic energy. However, the shock capturing scheme is
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Figure 8: Contours of density, pressure and temperature at a given instant of time shows interaction of the spherical energy spot with a
turbulent background.
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Figure 9: Radial statistics for (a) the radial component of velocity, (b) the transverse component of vorticity, and (c) pressure at t = 0.19
after energy deposition.

essential in the presence of strong shock waves. Thus, for ac-
curate simulation of the the background turbulence a nonlinear
limiter [4] has been implemented that turns on the shock captur-
ing only in the vicinity of the shock wave. The limiter is given
by

g =
θ2

θ2 +ω2 , (38)

where θ denotes divergence of velocity and ω denotes vorticity
magnitude. Figure 6b shows the energy spectrum at t/tτ = 5.0
where tτ denotes the eddy turn over time. Excessive dissipation
due to shock capturing is evident. Note that use of the nonlinear
limiter removes this excessive dissipation.

Figure 6c shows statistics for the time evolution of the vorticity
fluctuations. Note that even for higher order quantities, the ex-
cessive dissipation introduced by the shock capturing scheme is
effectively avoided using the nonlinear limiter.

The effect of using the logarithm formulation for the continu-
ity equation on isotropic turbulence has been shown in figure 7.
Figure 7a shows decay of turbulent kinetic energy in time while
figure 7b shows energy spectrum computed at a given instant
of time. Results are compared from two different solvers. The
first one uses the normal formulation of the continuity equa-
tion while the second one uses the logarithm formulation. For
each solver results are shown with and without the application
of shock capturing. In both the cases, the logarithm formulation
of the continuity equation is found to accurately compute the
evolution of the turbulent field.

Spherical energy deposition in isotropic turbulence.

Consider spherical deposition of energy in background isotropic

turbulence. Energy is deposited as described in the section
“Spherical energy deposition”, while the turbulence is gener-
ated in the background as described in the section “Isotropic tur-
bulence”. The turbulent field is allowed to decay for some time
after which the velocity derivative skew–ness attains a steady
value in the range of −0.3 to −0.4. The energy spot is then in-
troduced by increasing the temperature and pressure at constant
density.

Figure 8 shows contours of density, pressure and temperature at
a later instant of time. A spherically symmetric blast wave is
observed to propagate through the background turbulence com-
pressing the flow in a spherically symmetric manner. There is
significant expansion in the core. As the blast wave propagates
significantly into the background, it is observed to get distorted
rapidly due to interaction with the turbulence.

Since the problem is radially symmetric, statistics were ob-
tained as a function of radial distance from the center. Fig-
ure 9a shows statistics for the radial component of velocity at
t = 0.19. Amplification of turbulence levels are observed in the
vicinity of the blast wave. The local compression across the
blast wave causes the turbulence levels to amplify. Also since
the blast wave is radially symmetric the amplification is most
pronounced in the radial component of the velocity and hence
in the transverse component of the vorticity. This is observed
in statistics for the transverse component of vorticity shown in
figure 9b. Figure 9c shows statistics for pressure fluctuations
and indicate amplification in the vicinity of the blast wave. Tur-
bulence levels are observed to get suppressed in the core.

Conclusions

This paper addresses some of the numerical issues that are as-
sociated with simulation of strong blast waves in high temper-
ature flows interacting with turbulent background. Direct nu-
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merical simulation is used to simulate high temperature turbu-
lent flows under equilibrium conditions. The base numerical
scheme is spectral. A predictor corrector based shock capturing
scheme is incorporated to capture strong blast waves that are
observed in the flow. The shock capturing scheme has been ex-
tended for high temperature flows in equilibrium. Formulation
of high temperature eigen vector matrices for 3–D Euler equa-
tions has been presented for a generalized coordinate system.
Due to significant expansion, the densities in the core are ob-
served to be very low. Slight oscillations can thus result in den-
sities becoming negative and the solution becoming unstable. A
logarithm formulation of the continuity equation has been used
to address stability issues related to very low densities in the
core. The shock capturing scheme was found to dissipate the
background turbulence excessively. To avoid this, a non-linear
limiter has been implemented that applies shock capturing only
to the vicinity of the shock wave.

Three problems were considered to demonstrate the numerical
issues. The first problem dealt with spherical energy deposition.
The high temperature extension of the shock capturing scheme
was found to be essential for stability of the simulation. Also a
logarithm formulation of the continuity equation was required
for the solution be stable in regions of low densities. The sec-
ond problem dealt with simulation of isotropic turbulence. The
shock capturing scheme caused excessive dissipation thus lead-
ing to under prediction of the turbulent kinetic energy and the
turbulent energy spectrum. It was shown that this excessive dis-
sipation could be avoided by using the above mentioned non–
linear limiter. The third problem dealt with spherical energy de-
position in background isotropic turbulence. It was shown that
use of the shock capturing scheme along with the non–linear
limiter and the logarithm formulation of the continuity equation
was necessary to obtain a stable and accurate solution for both
the blast wave and the background turbulence.
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