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Abstract

The strength of vortical structures in a turbulent boundary layer
is of interest in determining the generation and development
of hairpin vortices. The dual-plane Particle Image Velocime-
try (PIV) data at z+ = 110 (z/δ = 0.09) and z/δ = 0.53 (z+ =

575) in a turbulent boundary layer at Reτ = 1160 obtained by
Ganapathisubramani et al. [7] were used to characterize the
strength of the vortical structures by their circulation. The 3D-
swirl was used to identify the vortex cores. The average number
of swirl cores per field identified at z+ = 110 was approximately
twice the average number at z/δ = 0.53. The mean radius of the
cores was found to decrease with increasing wall-normal dis-
tance. The main eigenvector of the velocity gradient tensor was
used to determine the orientation of each vortex core. Circu-
lation of the vortical structures was then calculated using the
vorticity vector projected onto the main eigenvector direction.
At z/δ = 0.53, the mean circulation calculated using the eigen-
vector was almost the same as that using the full vorticity vec-
tor, but for z+ = 110 the mean circulation calculated using the
eigenvector was 12% less than the mean circulation calculated
using the vorticity vector.

Introduction

A primary feature of turbulent boundary layers is the “hairpin
vortex” originally proposed by Theodorsen [14]. Hairpin vor-
tices can be found both in the logarithmic region and in the
outer wake region and have been observed to form spatially
coherent groups termed ”hairpin packets” (Adrian et al. [2],
Ganapathisubramani et al. [5]). These packets are an important
feature as they sustain the turbulence transport and production
near the wall. For instance, Ganapathisubramani et al. [5] found
that hairpin packets can contribute more than 25% to the −uw
Reynolds shear stress while occupying less than 4% of the total
area. Although the existence of these packets has been demon-
strated, their generation and development is not yet well under-
stood. Smith et al. [13] offered a description for the autogen-
eration of hairpin vortices from a single hairpin structure. They
concluded that the gradient of shear forces across the boundary
layer significantly affected the growth and deformation. Zhou et
al. [15] used direct numerical simulation (DNS) to investigate
the development of a single vortical structure by systematically
varying its vorticity strength and wall-normal position. They
found that when the vorticity strength exceeded a threshold, for
a particular wall-normal distance, the vortical structure auto-
generated secondary and tertiary hairpin vortices at both down-
stream and the side of the original hairpin vortex, which had a
similar manner as that described by Smith et al. [13]. The pri-
mary and the new hairpin vortices subsequently developed into
a coherent hairpin packet. On the other hand, they found that
weaker vortical structures remained unaltered and did not auto-
generate vortices. In this study, it should be noted that the single
hairpin was inserted into an otherwise quiescent flow with a tur-
bulent mean profile, and therefore, the overall flow was not fully
turbulent. In a turbulent boundary layer, many vortical struc-
tures are present and thus their influence and interaction with
one another could significantly affect the autogeneration pro-

cess. Nevertheless, previous studies give a useful insight into
hairpin packet formation.

It is clear that the strength of the vortical structures and their
wall-normal position is an important characteristic that will de-
termine their development. Therefore, it is important to quan-
tify the strength of vortex cores found within turbulent boundary
layers. A few previous studies, e.g. Acarlar and Smith [1], Car-
lier and Stanislas [4], and Hambleton [9], have used circulation
to characterize the strength of vortical structures. For example,
Carlier and Stanislas [4], who examined planes normal to and
inclined from the boundary layer surface, concluded that the cir-
culation of vortical structures in the logarithmic region slowly
decreased away from the wall mainly due to a decrease in vor-
ticity strength and not due to a change in vortex core radius.
Hambleton [9], who examined streamwise/wall-normal planes,
found a similar trend for circulation. In the previous studies,
only one vorticity component, that normal to the measurement
plane, was available, and therefore, all vortices were assumed
to have orientation normal to the measurement plane.

The aim of this study is to evaluate the strength of vortical struc-
tures crossing streamwise/spanwise planes, both in the log re-
gion and in the outer wake region. An accurate calculation of
circulation requires the correct identification of the orientation
of each vortex core. Thus, this study utilized data containing the
full velocity gradient tensor. As will be shown, the local vortic-
ity vector is sometimes not sufficient to determine the core di-
rection. Other researchers ([3], [15]) noted that the local vortic-
ity vector was not always aligned with the direction of vortical
structures in simulations of channel flow. For instance, Bernard
et al. [3] showed that the local vorticity vector was often angled
away from the local axes of vortical structures at locations very
close to the wall. In the current study, the eigenvector of the
velocity gradient tensor was used to determine the direction of
the vortical structures and eventually the circulation. In the fol-
lowing sections, we discuss the dataset utilizes for the analysis,
our methods for determining the location, size, and orientation
of vortex cores, and resulting distributions of vortex orientation,
size, and circulation.

Description of PIV Dataset

The dual-plane PIV data within the log region at z+ = 110 (z/δ =

0.09) and within the outer wake region at z/δ = 0.53 (z+ = 575)
of a turbulent boundary layer at Re=1160 obtained by Gana-
pathisubramani et al. [7] were investigated. The experiments
were conducted in a suction-type boundary layer wind tunnel
with zero pressure gradient and a freestream velocity of 5.9 m/s.
The measurement plane was located 3.3 m downstream of a trip
wire, and the boundary layer thickness, δ, at the measurement
plane was 70 mm. The Reynolds number based on momentum
thickness Reθ was 2800. The coordinates x, y, z denote the
streamwise, spanwise and wall-normal directions respectively.
The results are non-dimensionalized using the skin friction ve-
locity (uτ) and the kinematic viscosity (ν), and are denoted with
the superscript +.

A three-camera polarization-based dual plane PIV system was
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used to obtain data to calculate complete velocity gradients
in the lower plane. The field of view was 1.1δ × 1.1δ, and
the resolution of each velocity vector was 24 × 24 wall units.
The dataset for z+ = 110 comprised of 1201 statistically-
independent vector fields containing 100 × 100 overlapped
vectors, and the dataset for z/δ = 0.53 comprised of 912
statistically-independent vector fields containing 95 × 95 over-
lapped vectors. Details of the experimental technique and of the
mean and R.M.S. statistics of the velocity and vorticity compo-
nents are given in Ganapathisubramani et al. [6] and Ganap-
athisubramani et al. [7].

Vortex Identification

The swirl strength (see Zhou et al. [15]) was used to identify
vortex cores. A technique similar to that used by Ganapathisub-
ramani et al. [7] was applied. Both three-dimensional swirl,
λ+

3D, and two-dimensional swirl, λ+
2D were employed. These

are defined, respectively, as the imaginary part of the com-
plex eigenvalue of the complete velocity gradient tensor and the
imaginary part of the complex eigenvalue of the reduced ve-
locity gradient tensor (in the x-y plane). The following steps
were used in an algorithm to identify the vortex cores for each
instantaneous velocity field:

• Step 1. Identified points must satisfy two conditions:
λ+

3D > 0.02 and λ+
2D > 0. The first condition identifies

swirling regions of any orientation with dimensionless
swirl strength above a threshold. This threshold, which
was the same for both measurement planes, was set equal
to 10% of the maximum swirl strength measured at z/δ =

0.53 (the maximum swirl strength at z+ = 110 was 0.3).
The threshold value was set to minimize noise contribu-
tions to the statistics. The second condition was applied
to limit identified cores to those that have some compo-
nent normal to the measurement plane [12].

• Step 2. All points of local λ+
3D maxima were marked.

• Step 3. A region growing algorithm was applied to each
local maximum in order to identify core regions. If mul-
tiple vortex cores connected to each other, saddle points
were located and the joint area was separated into inde-
pendent vortex cores.

• Step 4. A minimum core area of 5 points was specified.
The threshold for minimum number of points was used
to eliminate weaker cores and potential contributions due
to measurement uncertainty. Figure 1 shows results from
instantaneous fields at z+ = 110 and at z/δ = 0.53. Vortex
cores identified by the algorithm are surrounded by thick
black contours. It can be seen that small regions of high
λ+

3D are not identified as cores. The plots also show that
the number of cores identified at z+ = 110 is larger than
the number at z/δ = 0.53. The average number of cores
identified per field at z+ = 110 was approximately twice
the average number at z/δ = 0.53.

Determining Vortex Core Orientation

In the following discussion, we will consider a vortex core as
being a cross section of a swirl isosurface tube. The vortex core
orientation, in particular the direction of the swirl isosurface
tube, is critical to the calculation of the circulation. The orien-
tation of vortex cores has been previously assumed to be given
by the vorticity vector (e.g. Ganapathisubramani et al. [7]).
However, as will be shown here, the direction of a swirl iso-
surface tube does not always match the direction given by the
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Figure 1: Identified vortex cores at (a) z+ = 110 and (b) z/δ =

0.53. The flow is from left to right.

vorticity vector. To investigate this further, consider an incom-
pressible flow with velocity field defined as in Equation (1) and
illustrated in Figure 2:


U
V
W

 =


y− x/r
−x− y/r
z/r

 , r =

√
x2 + y2. (1)

Figure 2(a) shows streamlines for this field while Figure 2(b)
shows vortex lines. The cylindrical contour represents an iso-
surface of 3D-swirl for which the z axis is the axis of symme-
try. The small windows in each bottom-right corner show the
top views of each field. In Figure 2(b), from the top view, it is
clear that the vortex lines align with the isosurface of the swirl.
Since the tangent direction of the vortex lines is the direction of
the vorticity vector, the direction of the vortex lines obviously
differs from the direction of the z axis. Hence, for this case, the
direction of the vorticity vector does not indicate the direction
of the swirl isosurface tube.

Consequently, the following question arises: how can the direc-
tion of the swirl isosurface tube be determined? As mentioned
previously, the 3D-swirl is defined as the imaginary part of the
complex eigenvalue of the velocity gradient tensor. In a Carte-
sian reference frame, the velocity gradient tensor is defined as,
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(a)

(b)

Figure 2: Illustration of flow field described by equation (1).
The shaded cylinder indicates an isosurface of 3D-swirl. (a)
streamlines of the velocity field; (b) vortex lines. Small win-
dows are top view of each field.

D =


∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z
∂w/∂x ∂w/∂y ∂w/∂z

 , (2)

If we consider the flow in the reference frame moving with point
P as illustrated in Figure 3, the velocity gradient tensor will
have different matrices in different reference frames. In the case
that the 3D-swirl strength is greater than zero, the tensor D has
one real eigenvalue, λr, and a pair of complex conjugate eigen-
values, λc(cosθ ± isinθ), where i2=-1 and θ is the argument.
In complex space, the real eigenvalue has a real eigenvector,
νr, and the two conjugate complex eigenvalues have complex
eigenvectors, νc1 and νc2. In real space, three real eigenvectors
Λr, Λc1 and Λc2 can be given by,

[
Λr, Λc1, Λc2

]
=

[
νr, (νc1 +νc2), i(νc1 −νc2)

]
, (3)

where the first unit eigenvector will be referred to as the main
eigenvector.

In a non-Cartesian reference frame with these three covariant
base vectors Λr, Λc1 and Λc2, the original velocity gradient
tensor, D, becomes a different matrix, D′ defined as,

Figure 3: Streamline pattern in local covariant frame. Λr, Λc1
and Λc2 are eigenvectors of velocity gradient tensor at point P.
S is the swirl isosurface.

D′ =


λr 0 0
0 λc cosθ −λc sinθ
0 λc sinθ λc cosθ

 , (4)

where D′ is the velocity gradient tensor in local non-Cartesian
coordinates. Under this transition mapping, as Zhou et al. [15]
described: every vector is either stretched or compressed by λr
along the axis Λr. On the plane spanned by the vectors Λc1 and
Λc2, the projection component of the vector is rotated by angle θ
and magnitude increased or decreased by λr (θ is the angle in the
Λc1-Λc2 plane, and since the base vectors are not orthogonal,
this angle does not correspond with a specific rotation in the
Cartesian frame.). As shown in Figure 3, the velocity variation
along the Λr axis is:

D′ ·drnΛr = λrdrnΛr , (5)

where dr is a length along Λr and nΛr = [1,0,0] is the unit vec-
tor of Λr in local non-Cartesian coordinates. In the same frame,
only the Λr-component of the velocity changes. The velocity
gradient tensor in the Λc1-Λc2 plane will not be changed, and
the strength of 3D-swirl is unchanged. The characteristic equa-
tions are the same in the different frames, and the swirl strength
is an isotropic scale function of a second order tensor which
depends only on the characteristic equation. Assume there is
a point P′ on the isosurface of swirl, S, as shown in Figure 3.
The vector between P and P′ will limit onto Λr, when P′ limits
toward P. Therefore, Λr is the tangent to the isosurface of 3D-
swirl at point P, and gives the direction of the vortex core. Thus,
it has been shown that the main eigenvector gives the direction
of the swirl isosurface tube.

The example presented in Figure 2 shows that, in some cases,
the main eigenvector and the vorticity vector are not in the same
direction. If and only if the velocity gradient tensor is the same
in both Cartesian coordinates and the local covariant frame es-
tablished by three real eigenvectors, the vorticity vector and the
main eigenvector will be in the same direction which is the di-
rection of the swirl isosurface tube.
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Results in Turbulent Boundary Layer

Vortex Core Orientation

The dual plane PIV dataset of Ganapathisubramani et al. [7]
was investigated to examine vortex cores within a turbulent
boundary layer. Figure 4 gives the magnitude of the difference
angle, α, between the main eigenvector and the vorticity vector.
The main eigenvector and the vorticity vector are the average
vectors for each individual core. The positive direction of the
main eigenvector Λr is defined so that the magnitude of α must
fall in the range (0–90◦).
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Figure 4: Probability distribution of the angle, α, between the
main eigenvector and the vorticity vector.

The probability distribution of the difference angle α indicates a
peak at approximately 15◦ for both wall normal positions. Note
that a large number of cores appear to have a large angle differ-
ence of more than 30◦. In the example flow given above, large
angles occur, for example, at small r and large z magnitudes (see
Figure 2(b)). In this case, the vortex lines are nearly perpendic-
ular to the z-axis. Since Figure 4 shows only the magnitude of
the angle difference, the projection angles of the vectors onto
Cartesian planes are presented in Figure 5.

The projection angles of the vorticity and eigenvalue vectors in
the y-x, y-z and x-z planes were calculated. The inclination an-
gle θyx is the angle made by the projection of each vector in the
x-y plane with the positive y-axis, such that θyx = 0 indicates
alignment with the positive y-axis. The angle made by the pro-
jection of the vector in the y-z plane with the positive y-axis is
defined as θyz, and θxz is defined as the angle made by the pro-
jection of the vector in the x-z plane with the positive x-axis.
All of the projection angles were calculated from the average
eigenvector and the vorticity vector in each individual vortex
core.

Figure 5 shows the probability density function (PDF) of each
of the three projection angles respectively. The closed sym-
bols indicate angles obtained using the main eigenvector, and
the open symbols indicate angles obtained using the vorticity
vector. The plot of θyx in Figure 5(a) reveals differences in the
distributions at the two wall-normal locations. In the logarith-
mic region at z+ = 110, both angle distributions yield peaks at
θyx ≈±60◦, and the peaks are more distinct in the eigenvalue an-
gle distribution. These peaks are likely caused by hairpin necks
crossing the measurement plane (see [7]). The difference in
the two distributions therefore suggests that the necks are better

identified by the eigenvalue angle. In the wake region at z/δ =

0.53, the peaks at ±60◦ are much weaker, if present at all, and
the distributions are broader. Little difference is seen between
the eigenvector and vorticity angle distributions. The larger per-
centage of structures with θyx near 0◦ suggests that more hair-
pin heads are crossing this plane. The distinct increase in the
percentage of cores with orientation around ±180◦ suggests the
presence of cores with rotation opposite to hairpin heads as ob-
served previously by Adrian et al. [2] and Carlier and Stanislas
[4].

Figure 5(b) corresponding with θyz reveals similar distributions
at the two wall normal locations. At both locations, the eigen-
vector distribution yields a sharper peak than the vorticity distri-
bution, and the peaks are shifted toward larger angles. If the dis-
tributions are interpreted in terms of hairpin vortices, the peaks
correspond with tilt angles of hairpin necks in the spanwise di-
rection. Thus, the increase in the peak angle suggests that the
neck cores are tilted more to the vertical than previously thought
(see [7]).

The inclination angle θxz is the angle discussed most frequently
in descriptions of boundary layer structure. The angle distribu-
tions, plotted in Figure 5(c), show a clear difference between
those calculated using the main eigenvector and the vorticity
vector. The projection angle obtained using the main eigenvec-
tor peaks at θxz = 50◦ and -130◦ at z+ = 110 and θxz = 60◦ and
-120◦ at z/δ = 0.53. This is consistent with previous results of
other researchers where θxz was seen to increase with wall nor-
mal position ([3], [8], [10], [11]). On the contrary, the results
based on the vorticity vector suggest that the most probable θxz
decreases slightly with increasing wall normal position. Thus,
the eigenvector identification method appears more consistent
with the prevailing literature.

Circulation

To investigate the generation and development of hairpin vor-
tices in turbulent boundary layers, one important issue is iden-
tifying the strength of the vortical structures. The traditional
concept of circulation is introduced. The circulation was calcu-
lated for each vortex core using equation 6,

Γ+ =

∫

A
(ω+ ·Λr)(Λr · nz)dA+, (6)

where A is the vortex core area in the x-y plane (measurement
plane), ω is the vorticity vector, nz is a unit vector in the z direc-
tion, and Λr is the main eigenvector described in the previous
section.

The value of circulation is affected by the size of the vortical
structures and the strength of rotation about the axis of the swirl
isosurface. For the PIV dataset, the vortex core area and equiv-
alent radius were determined in two ways. First, the area was
determined in the measurement plane, as was done by previous
researchers ([4], [9]). Figure 6 shows the PDF of the radius of
the circle with area equivalent to the vortex core area in the mea-
surement plane for the two wall-normal positions. In this case,
the mean radius r+, was calculated to be 21.1 for z+ = 110 and
19.95 for z/δ = 0.53. These values are of similar magnitude to
the values obtained by Carlier and Stanislas [4] in other planes.
They found that the mean radius r+ across the log layer of a tur-
bulent boundary layer at Reθ = 7500 (Reτ is about 2000) varies
between 18 and 26. However, they concluded that the mean ra-
dius slightly increases away from the wall. This trend was not
observed here, although we are examining a different plane and
also comparing a position in the log layer to a position in the
outer wake region. Figure 6 also suggests that the cores identi-
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Figure 5: Probability density function of (a) θyx; (b) θyz; (c) θxz.

fied at z+ = 110 have larger radii than the cores at z/δ = 0.53 for
r+ larger than the mean.

Because of our access to the orientation of each core, we could
also determine a ‘true’ core area and radius for each structure.
The exact equivalent radius of each vortical structure, r′+, was
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Figure 6: Probability density function of vortex core radius
r+ and r′+. Minimum area threshold to be accepted as a core
has approximately a radius of 15 (equivalent to 5 contiguous
points).

calculated as

r′+ =

√
Λ̄r · nz

∫

A
dA+/π, (7)

where Λ̄r is the average unit eigenvector of an individual vortex
core. Obviously, this radius will be smaller than r+ for all cores
that are not perpendicular to the measurement plane. The mean
value of r′+ was calculated as 15.1 for z+ = 110 and 14.6 for
z/δ = 0.53 (see also the distributions in Figure 6). Note that the
5-point area threshold in the measurement plane was applied to
these cores, and since r′+ was generally smaller than r+, some
r′+ values occur at radii less than 15 as shown in Figure 6.

Figure 7(a) shows a comparison of the probability density func-
tion of the normalized circulation, Γ+, using vorticity projected
onto the main eigenvector, at z+ = 110 and z/δ = 0.53. The dip at
Γ+ = 0 is a result of the core selection criteria which filter out ei-
ther smaller or in-plane oriented vortices. The PDF yields peaks
at ±66 for z+ = 110 and at ±33 for z/δ = 0.53. Furthermore, the
mean of the magnitude of the circulation, Γ+, was calculated to
be 106.4 for z+ = 110 and 68.8 for z/δ = 0.53. These results sug-
gest that the mean strength of the vortical structures decreases
with wall-normal distance. When the mean circulation per core
was calculated using vorticity parallel to the vorticity vector, the
magnitude was approximately the same at z/δ = 0.53 , but for z+

= 110 the mean circulation calculated using the eigenvector was
12% smaller than the mean circulation calculated using the vor-
ticity vector. This suggests that the correct identification of the
vortex core normal direction becomes more critical in regions
closer to the wall.

Figure 7(b) shows the number distribution of cores identified
per field for the two wall-normal distances. The weaker, nar-
rower curve obtained for z/δ = 0.53 illustrates the smaller num-
ber of cores identified for this wall-normal position, of approx-
imately half, as mentioned earlier. In addition, the distribution
shows that there are larger numbers of cores at z+ = 110 for all
circulation values in the range 50 < Γ+ < 300.

These results show that, in the log region (z+ = 110), the vortex
cores are both more numerous and stronger than in the outer
wake region (z/δ = 0.53), as shown by the higher values of
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Figure 7: (a) Probability density function of circulation Γ+. (b)
Absolute number of cores identified per field.

circulation Γ+, and the large number of cores with higher cir-
culation. Stronger and more numerous vortices within the log
region possibly indicates that the autogeneration of new hairpin
vortices is more likely to occur at this wall normal location and
therefore more hairpin packets are likely to form. This hypothe-
sis is consistent with the findings of Zhou et al. [15] who postu-
lated that, as z+ increased above 50, increasingly strong vortices
would be required for autogeneration of packets in their simu-
lated flow. It is also consistent with the experimental findings
of Ganapathisubramani et al. [5] who concluded that, within
the log region, streamwise spatial coherence and organization
characteristic of hairpin packets were observed whereas in the
outer wake region, only single vortex cores were identified.

In order to compare the present results with the earlier numeri-
cal investigation of Zhou et al. [15], they are replotted in Figure
8 in terms of the average vorticity magnitude within each core
(here, unlike the circulation distributions, the vorticity magni-
tude is determined from the full vorticity vector). The distri-
butions can be compared with the vorticity threshold for auto-
generation of packets proposed by Zhou et al. [15]. In that
study, the authors proposed that vortical structures exceeding a
threshold vorticity strength can generate secondary and tertiary
vortices. These new hairpin vortices can subsequently develop
into coherent packets. In order to compare the present results
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Figure 8: Probability density function of average vorticity mag-
nitude ω+ in each core. The dashed line indicates the vorticity
strength threshold proposed by Zhou et al. [15] for z+ = 110
necessary for autogeneration of secondary and tertiary vortices.

with the threshold found by Zhou et al. [15], their threshold
values were re-normalized using inner scale variables, i.e., the
skin friction velocity uτ and the length scale l = ν/uτ.). Zhou
et al. [15] estimated a threshold of approximately ω+ = 0.075
equivalent to α = 2.6 in their notation, for a wall normal posi-
tion of z+ = 110 beyond which a primary vortex can autogener-
ate secondary and tertiary vortices. (No threshold for larger z+

was available in their results).

The PDF in Figure 8 yields peaks at ω+ = 0.12 for z+ = 110
and at ω+ = 0.084 for z/δ = 0.53. This indicates that the average
vortex strength, in terms of vorticity, decreases with increasing
wall-normal distance. Comparing the PDF of vorticity magni-
tude with the threshold proposed by Zhou et al. [15] indicates
that 97% of the cores identified at z+ = 110 can autogenerate
new vortices. This comparison is misleading for multiple rea-
sons, however. First, the DNS of Zhou et al. [15] is not a fully
turbulent flow. As described earlier, the DNS contains a mean
velocity profile corresponding with a turbulent channel flow, but
only one eddy event is imposed on the mean. Therefore, the
simulation ignored the effects of the numerous interacting ed-
dies in real turbulent flow. In a real boundary layer, the event
threshold required for initiation of a hairpin packet may be sig-
nificantly higher than in the simulated flow. Second, although
we have compared average vorticity values, we have not incor-
porated vortex core area in our comparison. It is likely that the
events leading to autogeneration in the simulated flow led to
vortex core radii that were large on average compared with the
full distribution of core sizes. Therefore, it would be better to
compare circulation directly (which we plan to do in the near
future).

Although no threshold data are available from the study by
Zhou et al. [15] for the outer-wake region, the threshold is ex-
pected to be higher in that region, and thus the percentage of
vortex cores with the likelihood of generating new hairpin vor-
tices is expected to decrease significantly. For example, given
the data in Figure 8, if the threshold were to be doubled from
the one presented, only 4% of the cores identified at z/δ = 0.53
could be considered to potentially autogenerate new vortices.

The results shown here are an initial step into understanding the
evolution of vortical structures within the boundary layer. In
reality, the development of a hairpin vortex will occur in the
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presence of other vortices which could influence and interact
with the hairpin vortex thus affecting the autogeneration pro-
cess. Merging of vortices to form larger structures could also
occur. Nevertheless, the results here provide an initial step into
understanding the nature of the vortex structures in the bound-
ary layer.

Conclusions and Discussion

The orientation and circulation of vortical structures within the
log region and the outer wake region in a turbulent boundary
layer have been investigated. Based on this investigation, the
following conclusions were obtained:

• The average number of swirl cores identified per field in
the log region was approximately twice the average num-
ber identified in the outer wake region.

• The orientation of the vortex cores, identified using 3D-
swirl, is best given by the eigenvector of the velocity gra-
dient tensor and not the vorticity vector.

• The mean radii of the vortex cores corresponding with
swirl isosurface tubes was found to decrease with increas-
ing wall-normal distance.

• In the log region (z+ = 110), vortex cores had a higher
mean circulation than the cores in the outer wake region
(z/δ = 0.53).

• Using the eigenvector instead of the vorticity vector to de-
termine the direction of vortical structure resulted in a de-
crease of the mean circulation per core of 12% at z+ = 110
and almost no decrease at z/δ = 0.53. This suggests that
the correct identification of the vortex core orientation is
an important issue, and it becomes more critical in regions
closer to the wall.

The results we provided here represent an initial step into un-
derstanding the nature of the vortex structures in the turbulent
boundary layer. In the near future, more aspects will be investi-
gated such as:

• The effect of Reynolds number on vortex core size and the
circulation. Head and Bandyopadhyay [10] pointed out
that the radii of hairpin cores are likely to decrease with
increasing Reynolds number. It will be very interesting
to understand the relations between Reynolds number and
the radii of hairpin cores qualitatively and quantitatively.
At the same time, in order to isolate this scaling depen-
dence from other effects, it would again be important to
determine the effect of Reynolds number on circulation
statistics.

• The distribution of vortex cores in different orientation
planes and different wall normal locations. Previous re-
search examining vortex cores provided results in different
orientation planes. Carlier and Stanislas [4] focused on the
spanwise-wall normal plane and its tilt planes. Hambleton
[9] mainly took measurements in streamwise-wall normal
planes. Both of them provided the trend of vortex cores
changing with the wall normal direction. Currently, we
have datasets in only two wall normal locations. It will
be interesting to have more data in different locations to
compare against the previous investigations.

• The development and dynamics of vortical structures in
turbulent boundary layers. Since the strength of the vor-
tical structures was qualified successfully as we showed,

it will be valuable to apply the techniques herein in time-
evolving flow fields.
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