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Abstract

The wake of a blunt airfoil has been analysed using a
two-dimensional Unsteady Reynolds Averaged Navier Stokes
(URANS) method. The k− ε, Spalart-Allmaras and Partially
Resolved Navier Stokes (PRNS) turbulence models were com-
pared along with experimental data. All three models were able
to successfully reproduce the effect of vortex shedding on the
thickness of the boundary layer at the trailing edge. However,
the simulations do not show as good a comparison in the near-
wake region of the airfoil, due to an over prediction of the ve-
locity defect in all cases. The Spalart-Allmaras model provided
the best prediction of the intermediate- wake region. The PRNS
model persistently underestimates the centreline wake velocity
in the intermediate wake.

Introduction

Solving the Unsteady Reynolds Averaged Navier Stokes
(URANS) equations is attractive from a practical standpoint as
it holds the promise of lower computational cost when com-
pared with other methods, such as Large Eddy Simulation.
URANS uses the same turbulence models as steady-state RANS
but includes the unsteady terms in the governing equations.
Lower computational cost occurs because most of the turbu-
lence is modelled and only a small part is resolved. The diffi-
culty with URANS is that it is theoretically ambiguous as it is
not really clear how the amount of resolved and modelled tur-
bulence is proportioned within the system of equations. Part of
the problem lies in the use of the Boussinesq assumption, that
assumes that the principal axes of the Reynolds stress and strain
rate tensors are aligned. While this approximation may be valid
for turbulent flows in equilibrium, sudden changes lead to re-
gions of non-equilibrium turbulent flow where this assumption
breaks down. Further, the dissipative nature of classical RANS
turbulence models (such as the k− ε model) is well known and
is due to its development being based on thin shear layers such
as boundary layers. Despite these shortcomings, URANS com-
putations are becoming more popular for high Reynolds number
engineering flows.

This paper will investigate the use of two-dimensional (2D)
URANS with three contemporary turbulence models to com-
pute the flow field over a blunt, 2D airfoil. Understanding the
flow about blunted airfoils is important for proper control of
noise and unsteady blade loading. Even small amounts of blunt-
ing [5] has been shown to cause unsteadiness about the trailing
edge, affecting noise levels. Large amounts of airfoil blunting
can occur in industrial applications (such as extractor fans), in
specialist aeronautical applications or in wind turbines. The
blunted airfoil studied here was used to generate nearly two-
dimensional vortices for a fundamental vortex interaction ex-
periment. A subsequent experimental and numerical study was
performed of the blunted airfoil in isolation to obtain a more
complete understanding of the vortex generation mechanisms.
This paper examines these results and evaluates three turbulence
models used in the numerical analysis.

The numerical results are compared with experiments and con-

clusions are drawn at the end of the paper regarding the suitabil-
ity of URANS for unsteady wake flows.

Blunt Airfoil Experiment

Figure 1 illustrates the blunt airfoil that was used in the exper-
iments carried out in the University of Adelaide anechoic wind
tunnel [4]. The leading edge is elliptical to prevent upstream
separation, therefore the only shed vorticity in the flow domain
occurs at the trailing edge. The airfoil has a chord of c = 80 mm
and a trailing edge thickness of h = 8 mm (c/h = 10). The blunt
airfoil has a span of 50 mm which covers the width of the test
jet exit of the anechoic wind tunnel. The wind tunnel provided
a uniform test flow with a turbulence intensity of 0.37%. Ad-
ditional hot-wire measurements found that that the wind tunnel
wall boundary layer height was 1.5 mm for the test conditions
used for this study (U∞ = 30 m/s), leaving a large, uniform test
core. The Reynolds number based on the trailing edge thickness
was Reh = 16000 and airfoil chord was Rec = 160000.

Velocity measurements were obtained in the wake of the blunt
airfoil using a hot-wire anemometer with a single-wire probe.
These consisted of point-wise measurements that obtained the
Strouhal number of the near-wake as well as wake mean veloc-
ity profiles. This information will be compared with the numer-
ical simulations in this paper.

Figure 1: Illustration of blunt airfoil used in experiments

Computational Details

Computational Flow Domain

As upstream separation was suppressed using an elliptical lead-
ing edge, the main vorticity generation occurs at the trailing
edge. Instead of simulating the complete flow about the blunt
airfoil, a modified flow domain was used where only the flow
over the trailing edge was considered. To obtain the correct
boundary layer height at the trailing edge, a flat plate boundary
layer solution was used. The length of the flat plate is chosen
to re-create the boundary layer height expected at the trailing
edge of the blunt airfoil. The expected height of the blunt air-
foil boundary layer is calculated using the experimental airfoil
correlations of Brooks et al. [1].

The correlation for untripped boundary layers is:

δ
c

= 10[1.6569−0.9045logRec+0.0596(logRec)2] (1)

where δ is the boundary layer height, c is the chord and Rec is
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the Reynolds number based on the chord.

Using this correlation, the expected trailing edge boundary layer
height can be calculated. Then, using standard turbulent bound-
ary layer relations [2], an effective length of flat plate can be
used to re-create the same boundary layer height. Using this
method, it was determined that a flat plate of length 11.2h was
required.

Therefore, the flow domain consists of a flat prism of length
11.2h and height h, where h = 8 mm. The flow domain is
28.7h×41h in the x× y directions, as shown in Fig. 2.

Figure 2: Flow domain used for simulations

Governing Equations and Solution Method

The unsteady Reynolds Averaged Navier Stokes (URANS) and
continuity equations were numerically solved in this study. The
Reynolds Averaged Equations were closed using the turbulence
models describes in the next section and the Boussinesq approx-
imation.

The equations were discretised using a structured finite-volume
method [6] and the convective and diffusive terms were evalu-
ated using a second-order accurate central-differencing method.
Time integration was performed using an Euler method with the
requirement that the maximum Courant number was kept below
0.2. The pressure-implicit split-operator (PISO) algorithm with
two correction steps was used as an implicit, transient solution
scheme. The resulting system of equations were solved using
the incomplete Choleski conjugate gradient method with a so-
lution tolerance of 10−6.

Turbulence Models

Three turbulence models are considered in this study. They are
the k− ε model [7], the Spalart-Allmaras model [11] and the
Partially Resolved Navier Stokes (PRNS) model [8].

The k− ε model is a two-equation model that provides an esti-
mate of the specific Reynolds-stress tensor via the Boussinesq
approximation

τi j = 2νT Si j− 2
3

kδi j (2)

where νT is the kinematic eddy viscosity, Si j the strain-rate ten-
sor, δi j is the Kronecker delta and k is the turbulent kinetic en-
ergy. The eddy viscosity is estimated using

νT = Cµk2/ε (3)

Separate equations are used for the turbulent kinetic energy (k)
and dissipation rate (ε) respectively

∂k
∂t

+U j
∂k
∂x j

= τi j
∂Ui

∂x j
− ε +

∂
∂x j

[
(ν + νT /σk)

∂k
∂x j

]
(4)

∂ε
∂t

+U j
∂ε
∂x j

= Cε1
ε
k

τi j
∂Ui

∂x j
−Cε2

ε2

k
+

∂
∂x j

[
(ν + νT /σε)

∂ε
∂x j

]

(5)

where Ui is the fluid velocity component in the i direction (with
three orthogonal axes, i, j,k), t is time and xi is the distance in
the i direction. The closure coefficients are Cε1 = 1.44, Cε2 =
1.92, Cµ = 0.09, σk = 1.0 and σε = 1.3. Full details of the
model can be found in the original reference [7].

The Spalart-Allmaras model is a one equation model that solves
for the eddy viscosity of the turbulent flow. It uses the following
relationship to compute the eddy viscosity

νT = ν̃ fv1 (6)

and the following equation to compute ν̃ at each time step

∂ν̃
∂t

+U j
∂ν̃
∂x j

=

cb1S̃ν̃− cw1 fw

(
ν̃
d

)2
+

1
σ

∂
∂xk

[
(ν + ν̃)

∂ν̃
∂xk

]
+

cb2

σ
∂ν̃
∂xk

∂ν̃
∂xk

(7)

The model requires the following closure coefficients and aux-
illiary relations for implementation

cb1 = 0.1355, cb2 = 0.622, cv1 = 7.1, σ = 2/3 (8)

cw1 =
cb1

κ2 +
1 + cb2

σ
, cw2 = 0.3, κ = 0.41 (9)

fv1 =
χ3

χ3 + c3
v1
, fv2 = 1− χ

1 + χ fv1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

(10)

χ =
ν̃
ν
, g = r + cw2(r6− r), r =

ν̃
S̃κ2d2 (11)

S̃ = S +
ν̃

κ2d2 fv2, S =
√

2Ωi jΩi j (12)

Ωi j =
1
2

(
∂Ui

∂x j
− ∂U j

∂xi
) (13)

where d is the distance to the closest surface. Full details of the
model can be found in the original reference [11].

The k−ε and Spalart-Allmaras models are well known and used
for steady turbulent flows. However, their ability to capture im-
portant transient flow phenomena is limited, as their original
formulations are based upon steady shear layers. Additionally,
there is some ambiguity as to what scales are modelled and
what scales are resolved. Large Eddy Simulation (LES) has
been shown to be useful in simulating unsteady, turbulent flows
with high accuracy, however, the computational requirements
are high, as the method attempts to simulate the turbulent struc-
tures down to the inertial scale. In some engineering analyses,
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only the important large scales of the flow need to be resolved,
so there is a requirement for a new approach to enable more
accurate simulations at moderate computational cost.

The PRNS method [8] is an attempt to provide a more compu-
tationally tractable method of solving unsteady turbulent flow
problems. The method uses temporal filtering over a fixed time
or frequency limit instead of the usual Reynolds averaging to
obtain temporally filtered Navier Stokes equations. A tempo-
rally filtered variable (φ) can be calculated using a fixed tempo-
ral filter width (∆T ) using

φ(t,xi) =
1

∆T

Z t+∆T /2

t−∆T /2
φ(τ,xi)dτ (14)

Thus, the usual Reynolds averaging occurs when ∆T
T = ∞ and

no averaging occurs when ∆T
T = 0.

Temporal filtering can be applied to the Navier Stokes equations
analogously to a Reynolds averaging operation. The result is a
set of equations known as the Partially Averaged Navier Stokes
equations. The temporal filter width can be used to control the
partition between resolved and modelled turbulent scales in a
way similar to the spatial filter of LES. PRNS does this through
controlling the eddy viscosity with the turbulence model. For
example, for the k− ε model, it can be shown that the PRNS
eddy viscosity is

νT =
(

∆T

T

)
C1

(
k2

ε

)
(15)

where C1 = Cµ = 0.09, T is the global integral time scale for the
flow and ∆T

T is known as the Resolution Control Parameter. The
original formulation [8] uses ∆T

T = 0.38, and this is the same
parameter value used in this study.

Computational Mesh

The simulation described here was performed on a non-uniform
Cartesian mesh. Five meshes were used to establish the accu-
racy of the solution method. The discretisation error based on
solutions obtained from these five meshes is discussed in the
Convergence section below. The finest grid density investi-
gated in this study contained Nx = 325×Ny = 184 grid points
and all simulation results presented in this paper use this grid.

Flow Field Initialisation

A two-dimensional potential flow solver is used to create a con-
servative flow field to initialise the simulations. Using this as the
starting condition at tU∞/h = 0, the two-dimensional URANS
equations are iteratively solved. It takes approximately 5000
time steps or a non-dimensional time of tU∞/h = 18.75 for
vortex shedding to begin. All initial flow transients have dis-
appeared by tU∞/h = 150 or 5.2 computational domain flow-
through times.

Flow simulations are obtained after the initialisation period for
tU∞/h = 112.5 non-dimensional time units or 4 domain flow-
through times. This corresponds to 30000 time steps and cap-
tures 25 vortex shedding cycles with 1200 time steps per shed-
ding period on the finest mesh.

Convergence

Determining the grid convergence or discretisation error is an
important part of any numerical analysis. Here, three methods,

based on the Richardson extrapolation [9] technique, were used
to estimate the grid independent solution. Three methods were
required, as it it sometimes difficult to properly estimate the
order of the solution, especially in turbulent flows [10, 3].

The first and second order Richardson extrapoloation methods
of Celik and Karatekin [3] were used. A special mixed-order
technique [10] was also used. Including a mixed-order method
was considered important because, in the current flow simula-
tions, all spatial derivatives were approximated by second order
accurate schemes, but the time integration was Euler, which is
first order. Therefore, the method was regarded as mixed and
the order should be realistically bounded between 1 and 2.

To estimate discretisation error, the time-varying flow velocity
at a point x = 1.75h,y = 0.75h from the trailing edge mid-plane
was used for the analysis. Table 1 summarises the error calcu-
lated using the first, second and mixed order schemes. It can be
seen that the error of the solution was below 2.8% regardless of
the order assumed.

Table 1: Discretisation Error Results

Order Error, eh
Mixed-Order 2.34%
First-Order 2.07%

Second-Order 2.73%

Simulation Results

Instantaneous Results

Figure 3 shows colour contours of instantaneous vorticity about
the trailing edge region at tU∞/h = 262.5 for all modelling tech-
niques under investigation. In this and subsequent figures, the
length scale is given by the trailing edge height h = 8 mm. It
can be seen that a Von-Karman-like vortex street forms behind
the trailing edge, due to strong, alternate shedding of the airfoil
boundary layers from the top and bottom surfaces. The shed-
ding process is complex, as it involves a redistribution of eddy
length-scales from the boundary layer, where the maximum en-
ergy containing eddies have a size lp ∼ δ, to the wake, where
lp ∼ h. The unsteady nature of the wake induces fluctuating
forces on the airfoil which results in radiated noise (as measured
in experiments [4]).

There are small but significant differences in the instantaneous
vorticity for each of the turbulence models shown here. The
largest differences are in the near-wake region. The PRNS
model creates vortices whose intensity persists further into the
wake than the other models.

Figure 4 compares the modelled turbulent kinetic energies for
the k− ε and PRNS models. The SA model doesn’t directly
model the turbulent kinetic energy. The modellled eddy vis-
cosity is shown as this is related to the turbulent kinetic energy
through a constant and a turbulent length scale: νT = C

√
k`.

It can be seen that the majority of modelled turbulent kinetic
energy is generated in the near-wake region. Interestingly, the
PRNS method shows a finer resolution of modelled kinetic en-
ergy, allowing larger and higher frequency velocity fluctuations
to be directly resolved on the grid. The Spalart-Allmaras model
shows increasing eddy viscosity generation with distance be-
hind the trailing edge.

The time history of the velocity taken at a point just behind
the trailing edge at x = 1.75h,y = 0.75h from the trailing edge
mid-plane is shown in Fig. 5(a). It can be seen that the signal
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(a) Vorticity magnitude, k− ε

(b) Vorticity magnitude, Spalart-Allmaras

(c) Vorticity magnitude, PRNS

Figure 3: Instantaneous vorticity magnitude, contours at
tU∞/h = 262.5. Contours are equally spaced over a range of
0< ωh

U∞
< 4

is periodic, with the fundamental Strouhal number varying be-
tween f0h/U∞ = 0.219− 0.231 for the three test cases. This
is confirmed by the frequency spectra for each model, shown
in Fig. 5(b-d), which was calculated using a Fast-Fourier-
Transform (FFT) procedure with no pre-treatment or filtering
of the numerical data. It is interesting that compared with the
standard k− ε model, the Spalart-Allmaras model increases the
Strouhal number and PRNS reduces it, according to the the way
each accounts for eddy viscosity production. Most major fre-
quency peaks are similarly captured by each turbulence model.

The Strouhal number obtained by experiment [4] using hot-wire
anemometry at the same point was found to be 0.267, much
higher than the numerical simulations and other blunt airfoil
studies [1], which is usually about 0.21. The reasons for such
a high measured Strouhal number is unclear but maybe due to
coupling between the shear layers of the free-jet wind tunnel
and the shed vorticity of the airfoil.

Streamlines

Figure 6 shows streamlines computed from time averaged nu-
merical results. The streamlines show a well-defined, symmet-
ric recirculation region immediately behind the trailing edge
in each case. The Spalart-Allmaras model increases the re-
circulation bubble while PRNS reduces it. To further quan-
tify the recirculation bubble size and velocity field in the near
wake, numerical centerline stremwise velocity data is shown
in Fig. 7. Despite the differences in the near wake, the k− ε
and Spalart-Allmaras models have similar streamwise velocity
in the intermediate-wake and beyond. The PRNS model, how-
ever, has a shorter recirculation bubble length, more intense re-
circulation within the bubble and a persistantly low centerline
streamwise velocity level when compared with the other mod-
els investigated in this study.

(a) Modelled turbulent kinetic energy, k− ε

(b) Modelled eddy viscosity, Spalart-Allmaras

(c) Modelled turbulent kinetic energy, PRNS

Figure 4: Instantaneous modelled turbulent kinetic energy and
eddy viscosity, contours at tU∞/h = 262.5. Contours are
equally spaced over a range of 0 <

√
k

U∞
< 0.3 for (a) and (c).

Contours are equally spaced over a range of 0 < νT
ν < 880 for

(b)

Mean Flow Results

Figure 8 compares numerical and experimental [4] mean bound-
ary layer velocity profiles at the location of the trailing edge for
each turbulence model. For these results, y = y+ = 0 indicates
the surface of the trailing edge. It can be seen that, in each case,
the outer regions of the boundary layer are correctly modelled
when compared with experiment. Also, the technique used to
simplify the flow domain is shown to be accurate as well.

In the log-layer (10 ≤ y+ ≤ 100), each model exhibits a differ-
ent response, depending on how individual wall functions are
implemented. For the k− ε and PRNS models, a log-layer wall
function: u+ = 1/κ lny+ + 9.0 was used (where u+ and y+ are
the friction velcocity scaled boundary layer velcoity and nor-
mal height [12]). No wall function was used for the Spalart-
Allmaras model (as it uses its own wall damping function) and
it can be seen that the log-layer response is quite different. In
all cases, the computations show that the mean velocity level
falls as y+ is increased into the defect-layer (y+ > 200), where
the usual expectation is that the u+ values will rise to reach the
free stream velocity. Hence vortex shedding has the effect of
increasing the thickness of the lower regions of the boundary
layer and distorting the merging of the boundary layer with the
free stream.

Mean velocity experimental data [4] for the wake region is also
compared with numerical results in Fig. 9 at three downstream
locations: x/h = 1.75, x/h = 4.88 and x/h = 8.00. In the near-
wake region (x/h = 1.75), agreement is poor for all turbulence
models, with the URANS results overestimating the velocity
defect behind the trailing edge. In the near-wake, major flow
changes are occurring and the assumption that production and
dissipation are matched (as occurs in boundary layer flows)
breaks down, resulting in poor comparisons with experiment.
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Despite an attempt to rectify this situation by modifying the
eddy viscosity, the PRNS model has poorer agreement in the
near-wake. One possible reason for this is the lack of stream-
wise vorticity in the simulation.

At distances beyond the initial development region (x/h = 4.88
and x/h = 8.00), agreement is better in each case except for the
PRNS model. PRNS underpredicts the velocity in the central
region of the wake, but has reasonable prediction of the wake
outside of this central zone. The k− ε and Spalart-Allmaras
models both have reasonable comparisons with experiment in
the intermediate wake and beyond.

Conclusions

The following major conclusions can be drawn:

1. Simplifying the flow domain using an empirical airfoil
boundary layer relationship has been shown to be success-
ful for this type of flow.

2. 2D URANS can accurately model the effect of vortex
shedding on the mean turbulent boundary layer profile at
the trailing edge of a blunt airfoil.

3. There is a slight but significant effect on vortex shedding
frequency for each turbulence model.

4. The mean velocity defect in the near-wake is significantly
over-predicted using 2D URANS techniques.

5. The 2D PRNS model significantly underpredicts centre-
line velocity in the near and intermediate wake regions.

6. The k− ε and Spalart-Allmaras models have reasonable
agreement in the intermediate wake region.

As a final note, it is concluded that 2D URANS is a useful tool
for studying unsteady turbulent flow physics as long as the user
understands the limitations of the method and turbulence model
employed. To increase the accuracy of URANS methods, more
attention is required to increase the fidelity of the turbulence
closure model and understanding how to control or better influ-
ence the distribution of turbulent kinetic energy between mod-
elled and resolved components. The PRNS method attempts to
do this, but it fails in this case in the near wake. There are two
possible reasons for this. The first is the lack of inclusion of
streamwise vorticity in the model. The second is the control
over how eddy viscosity is modified. In the present study, a
global resolution control parameter was employed. It can be ar-
gued, however, that ∆T

T should be dependent on the grid spacing
and time-step and be a function of the following form

∆T

T
= f




√
U2

i δt

∆


 (16)

In this way, a hybrid URANS-LES method can be developed.
This method could form part of a new RANS-LES hybrid
method called the Temporally Filtered Navier Stokes (TeFiNS)
technique.
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Figure 5: Velocity data obtained at a point x = 1.75h,y = 0.75h
from the trailing edge mid-plane

(a) k− ε

(b) Spalart-Allmaras

(c) PRNS

Figure 6: Streamlines in the trailing edge region. Coloured by
mean velocity.
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Figure 7: Streamwise velocity on the centre line of the wake. ke
= k− ε, SA = Spalart-Allmaras and PRNS = Partially Resolved
Navier Stokes.

1100



 0

 5

 10

 15

 20

 25

 30

 35

 1  10  100  1000  10000

u+

y+

u+ = (1/κ)ln y+ + 9.0

u+ = y+

URANS computation
Law of the wall: viscous sub layer 

Law of the wall: log-layer
Experiment

(a) k− ε

 0

 5

 10

 15

 20

 25

 30

 35

 1  10  100  1000  10000

u+

y+

u+ = (1/κ)ln y+ + 9.0
u+ = y+

URANS computation
Law of the wall: viscous sub layer 

Law of the wall: log-layer
Experiment

(b) Spalart-Allmaras

 0

 5

 10

 15

 20

 25

 30

 35

 1  10  100  1000  10000

u+

y+

u+ = (1/κ)ln y+ + 9.0

u+ = y+

URANS computation
Law of the wall: viscous sub layer 

Law of the wall: log-layer
Experiment

(c) PRNS

Figure 8: Comparison between time averaged URANS compu-
tation, experiment and law of the wall
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tation and experiment at various wake cross-sections
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