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Abstract

Moving least squares interpolation schemes are in widespread
use as a tool for numerical analysis on scattered data. In partic-
ular, they are often employed when solving partial differential
equations on unstructured meshes, which are typically needed
when the geometry defining the domain is complex. It is known
that such schemes can be singular if the data points in the stencil
happen to be in certain special geometric arrangements, how-
ever little research has addressed this issue specifically. In this
paper, a moving least squares scheme is presented which is an
appropriate tool for use when solving partial differential equa-
tions in two dimensions, and the precise conditions under which
singularities occur are identified. The theory is then applied in
the form of a stencil building algorithm which automatically
detects singular stencils and corrects them in an efficient man-
ner, while attempting to maintain stencil symmetry as closely as
possible. Finally, the scheme is used in a convection-diffusion
equation solver, and the results of a number of simulations are
presented.

Introduction

When creating numerical simulations that operate on data de-
fined on an unstructured mesh, it is necessary to employ inter-
polation techniques in order to evaluate the functions at arbi-
trary points in the domain. Calculation of the spatial derivatives
of a function, even at a point where the value of that function
has been specified, also require the use of such methods. A va-
riety of techniques for interpolation of a scalar function based
on values at scattered points have been described in the litera-
ture, however one of the more common ones is the moving least
squares scheme.

The moving least squares scheme allows a function and its spa-
tial derivatives to be approximated at a point (here termed the
interpolation point) based on scattered values of the function
(or its spatial derivative in some direction) at a number of other
points (here termed the data points). At each location in the
domain where an interpolation is required (e.g. at each edge
midpoint), a stencil of local data points is selected and it is this
set of data points which is used to approximate the value at the
interpolation point. The justification for basing the approxima-
tion only on local data points, as opposed to the complete set
of data points in the domain, is that the value of the function is
likely to be more strongly influenced by close data points, rather
than ones further away. Thus the stencil moves in order to be
local to the interpolation point it belongs to; this is the reason
for the word ‘moving’.

In the standard moving least squares scheme, a surface formed
from some basis function is fitted to the data points so that the
sum of the squares of the errors at each data point is minimised.

It is understood and accepted that the surface obtained will not
reproduce the values at the data points exactly, although the
errors are likely to be minimal if the data is smooth. Thus
the standard moving least squares scheme is properly called
an approximation rather than interpolation scheme. However,
since the errors of fit are known to be minimal for smooth data,
the term ‘interpolation’ is used even though ‘approximation’ is
more strictly correct.

The moving least squares scheme has been widely used for
both pure interpolation / approximation problems (e.g. in im-
age processing applications [1]) and in solving partial differen-
tial equations [2]. It has been widely reported in the literature
that the moving least squares scheme can suffer from singulari-
ties, where, in certain situations, the matrix requiring inversion
in the solution procedure is in fact not invertible. Desimone et
al [2], for instance, identify the singularity problem and note
that it tends to occur when the number of data points support-
ing each weight function is “not sufficiently greater than” the
number of linearly independent functions making up their basis
function (which is the theoretical minimum required). However,
the meaning of “sufficiently” is not made precise, and their so-
lution for avoiding the problem is acknowledged to be compu-
tationally expensive and numerically poor if the number of data
points included is not “considerably” greater than the theoreti-
cal minimum. A useful clue to the cause of singularities is pro-
vided by the work of Bodin et al [3], who note that singularities
occur when the data points are arranged in a “degenerate pat-
tern”, citing an arrangement along a straight line as an example.
However, no further discussion is provided of the general condi-
tions under which singularities occur. The singularity problem
for moving least squares has also been noted by Netuzhylov [4]
and Prax et al [5], and for a similar problem by Schoenauer and
Adolph [6], who also observed the occurrence of singularities
when the data points lie along straight lines. However, to the
best knowledge of the authors, a general theory for predicting
the occurrence of singularities in moving least squares has never
been published.

Moreover, the lack of a precise understanding of the cause of
singularities has meant that the strategies proposed to overcome
them are often vague and uncertain, such as adding extra data
points to the stencil (without any way of predicting in advance
which data points will be the best to add and how many new
data points may be required) or, in the case of meshless meth-
ods, randomly moving each data point a small distance [5]. Us-
ing the methodology presented in this paper, it is possible to
devise more reliable algorithms for detecting singular stencils
and correcting them efficiently (i.e. with a minimal number of
new data points added).

Overview of Moving Least Squares
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The interpolation scheme presented in this section is suitable for
use in finite volume solvers of two dimensional partial differen-
tial equations on unstructured meshes. This scheme is intended
to allow the calculation of a function f and its spatial deriva-
tives based upon the values and/or directional derivatives of that
function (or a linear combination of these) at various scattered
points in the local region. This amount of flexibility is necessary
for handling the kinds of boundary conditions that are typically
required when solving partial differential equations such as the
convection diffusion equation [7]. In order to allow for such
general boundary conditions, the following linear relationship
is specified for each data point j

a j f
(
x j,y j

)
+L jnx, j

∂ f
∂x

∣∣∣∣
(x j ,y j)

+L jny, j
∂ f
∂y

∣∣∣∣
(x j ,y j)

= C j, (1)

where x and y are the dimensional spatial coordinates, a j is a
dimensionless constant that is equal to 1 if the value of the func-
tion is involved in the specification or 0 otherwise, L j is a length
scale constant, nx, j and ny, j are the dimensionless components
of the unit vector in which the directional derivative is to be
specified and C j is a (possibly time varying) value. The factor
L j is necessary in order for all the terms in this expression to
have the same units (which are the same as the units of f itself).
With appropriate choices for the constants, this expression al-
lows the interpolation to be based on a variety of different data
point types.

In order to avoid numerical issues, such as disparities in mag-
nitude between terms of different order in the basis function,
it is desirable for the interpolations to be carried out in non-
dimensional space. To this end, it is necessary to define the
local scale of the mesh at each edge i and use this local scale for
non-dimensionalising and re-dimensionalising all length based
quantities involved in interpolations at this edge. A convenient
definition for the local mesh scale ∆i near edge i is

∆i =

{ √
Ai,1 when edge i is on a boundary√√

Ai,1
√

Ai,2 otherwise,
(2)

where Ai,1 and Ai,2 are the areas of the element(s) adjacent to
edge i. Because this length parameter is based on area, the same
length scale will apply to both the long and short sides of an el-
ement, which is useful in a mesh with a high aspect ratio. The
spatial coordinates used for doing the interpolation at the mid-
point of edge i are non-dimensionalised using an origin (xc,yc),
also located at the midpoint of edge i, giving

x̂ =
x− xc

∆i
(3)

and
ŷ =

y− yc

∆i
. (4)

The spatial derivatives of f can be expressed in terms of non-
dimensional spatial coordinates as

∂ f
∂x̂

= ∆i
∂ f
∂x

(5)

and
∂ f
∂ŷ

= ∆i
∂ f
∂y

. (6)

The length parameter used in (1) can be non-dimensionalised
thus, for each data point j which is used in the stencil for inter-
polating on edge i

L̂ j =
L j

∆i
. (7)

The data point specification (1) can then be expressed in terms
of non-dimensional spatial variables as

a j f
(
x j,y j

)
+ L̂ jnx, j

∂ f
∂x̂

∣∣∣∣
(x j ,y j)

+ L̂ jny, j
∂ f
∂ŷ

∣∣∣∣
(x j ,y j)

= C j. (8)

The moving least squares scheme requires that a basis function
be chosen, which will be fitted to the data points of each stencil.
One of the more common choices for a basis function is an nth
order polynomial, which can be expressed in non-dimensional
vector form as

f ∗ (x̂, ŷ) = b(x̂, ŷ)p, (9)

where p =
(

p1, p2, · · · p 1
2 (n+1)(n+2)−1

, p 1
2 (n+1)(n+2)

)T
, the

column vector of basis polynomial coefficients, and b(x̂, ŷ) =(
1, x̂, ŷ, x̂2, x̂ŷ, ŷ2, · · · , x̂n, x̂n−1ŷ, · · · , x̂ŷn−1, ŷn), the row vector

of basis polynomial terms.

The partial derivatives of the polynomial basis function can be
expressed in vector form as

f ∗x̂ (x̂, ŷ) = bx̂ (x̂, ŷ)p (10)

f ∗ŷ (x̂, ŷ) = bŷ (x̂, ŷ)p, (11)

where bx̂ (x̂, ŷ) = ∂

∂x b(x̂, ŷ) and bŷ (x̂, ŷ) = ∂

∂y b(x̂, ŷ).

The constraint which is specified for each data point j is given
by (8). In order to fit an appropriate basis polynomial, therefore,
it is necessary to compare the values of C j with values predicted
by the basis polynomial, C∗j . To this end an expression for C∗j
in terms of the basis polynomial must be obtained, which is

C∗j = a j f ∗
(
x̂ j, ŷ j

)
+ L̂ jnx, j f ∗x̂

(
x̂ j, ŷ j

)
+ L̂ jny, j f ∗ŷ

(
x̂ j, ŷ j

)
=

(
a jb

(
x̂ j, ŷ j

)
+ L̂ jnx, jbx̂

(
x̂ j, ŷ j

)
+ L̂ jny, jbŷ

(
x̂ j, ŷ j

))
p.

(12)

Finally, a column vector C∗ containing the predicted C∗j values
for all the m data points can be expressed as

C∗ = Bp, (13)

where B is an m by 1
2 (n+1)(n+2) matrix, defined by

B =


a1b(x̂1, ŷ1)+ L̂1nx,1bx̂ (x̂1, ŷ1)+ L̂1ny,1bŷ (x̂1, ŷ1)
a2b(x̂2, ŷ2)+ L̂2nx,2bx̂ (x̂2, ŷ2)+ L̂2ny,2bŷ (x̂2, ŷ2)

...
amb(x̂m, ŷm)+ L̂mnx,mbx̂ (x̂m, ŷm)+ L̂mny,mbŷ (x̂m, ŷm)

 .

(14)

The goal of the interpolation scheme, then, is to select p such
that C∗ is the best possible approximation to C, where C =
(C1,C2, · · ·Cm)T .

Note that, if m < 1
2 (n+1)(n+2), then an interpolant can be

obtained which fits the data points exactly. However, in this
case there are infinitely many basis functions which can inter-
polate the data and no way to distinguish between them. Many
of the possible basis functions may behave wildly in between
the data points, and so it is unlikely that an arbitrarily chosen
one will be useful. If m = 1

2 (n+1)(n+2), then a unique in-
terpolant may exist which fits the data points exactly. How-
ever, this basis function may not interpolate smoothly in be-
tween the data points. (Moreover, for certain geometrical ar-
rangements of the data points a singularity can occur, which
may only be overcome by adding more data points to the sten-
cil.) If m > 1

2 (n+1)(n+2), then a unique approximant can
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be obtained which minimises the sum of the squares of the er-
rors in fitting the basis function to the data points. This allows
a smoother interpolation in between the data points to be ob-
tained, at the expense of including additional redundant data
points in the stencil. However, it will be assumed in subse-
quent discussion that m≥ 1

2 (n+1)(n+2), so that a unique in-
terpolant or approximant can always be found.

One of the simplest ways to find a basis function which is a
good approximation to the given data is to select p such that

m
∑

j=1

(
C∗j −C j

)2
is minimised. However, this will mean that er-

rors in the fit will be equally weighted for all data points in
the stencil, regardless of their relative distance from the inter-
polation point. Intuitively, it would make more sense if distant
points were weighted less. For this reason, therefore, it is use-
ful to define a weight function w j associated with each data
point in the stencil, which will depend on the spatial relation-
ship between data point j and the interpolation point (xc,yc).
The weight function is applied to the least squares expression,

so that now the aim is to select p such that
m
∑

j=1

[
w j

(
C∗j −C j

)]2

is minimised. A good weight function will be a monotonically
decreasing function of the (normalised) radial distance between

the data point and the interpolation point, r̂ j =
√

x̂2
j + ŷ2

j . Sin-
gularities at r̂ j = 0 are to be avoided, since it is common for the
interpolation point to be coincident with one of the data points.
Also, the weighting function must be non-zero at all stencil data
points, since a zero weight at a data point is effectively non-
inclusion of the data point in the stencil. There are infinitely
many possible choices for the weight function, but a few are
listed in table 1. Note that the dimensionless shape parameter,
ε, is required for some of these functions; the smaller this value
is, the more heavily the weight function discriminates between
data points on the basis of distance. From numerical experi-
ments based on the accuracy in reproducing test functions, it
was found that the Gaussian weight function with ε = 1.4 was
an appropriate choice.

Table 1: Some possible choices of the weight function for the
moving least squares interpolation scheme

Weight Function Formula
Inverse w j = 1

1+
r̂ j
ε

Inverse Quadratic w j = 1

1+
r̂2

j
ε2

Exponential w j = e−
r̂ j
ε

Gaussian w j = e−
r̂2

j
ε2

Let a weight matrix w be defined by

w =


w1 0 0 · · · 0
0 w2 0 · · · 0
0 0 w3 · · · 0
...

...
...

. . .
...

0 0 0 · · · wm

 . (15)

It may then be shown that
m
∑

j=1

[
w j

(
C∗j −C j

)]2
is minimised

when

p = DC, (16)

where D =
(
(wB)T (wB)

)−1
(wB)T w. This defines the poly-

nomial of best fit (in a weighted least-squares sense) to the data
points of the stencil.

The polynomial coefficients thus calculated can be used for in-
terpolation of the function and its derivatives. These are given
by

f ∗ (x̂, ŷ) = b(x̂, ŷ)p
= b(x̂, ŷ)DC (17)

f ∗x̂ (x̂, ŷ) = bx̂ (x̂, ŷ)p
= bx̂ (x̂, ŷ)DC (18)

f ∗ŷ (x̂, ŷ) = bŷ (x̂, ŷ)p

= bŷ (x̂, ŷ)DC. (19)

Since the spatial derivatives obtained are taken with respect to
x̂ and ŷ, it is necessary to re-dimensionalise these in order to
obtain the dimensional versions of these quantities. This can be
done using (5) and (6).

Note that the row vectors b(x̂, ŷ)D, bx̂ (x̂, ŷ)D and bŷ (x̂, ŷ)D
are dependent only on the stencil structure and the weighting
function w. Hence these row vectors can be pre-computed and
stored, then reused as many times as required for time varying
data in the C vector. This is essential if this method is to be used
efficiently in a time stepping finite volume solver.

Singularities

It is well known in the literature that the moving least squares
scheme may fail if the data points of the stencil are in a special
spatial arrangement. Such stencils are termed singular stencils.
It may be shown that a given moving least squares stencil will
be singular if and only if the B matrix for the stencil possesses a
non-trivial null space. In other words, if there are any p vectors
(other than the zero vector) satisfying

Bp = 0, (20)

then the stencil is singular. If, on the other hand, the only solu-
tion to (20) is the zero vector, then the stencil is non-singular.

Using the singular value decomposition, the B matrix may be
expressed as

B = UDVT , (21)

where D =



D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · D 1

2 (n+1)(n+2)
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


is a diagonal

matrix of the singular values and

V =
[

VT
1 VT

2 · · · VT
1
2 (n+1)(n+2)

]
. Note that U is a

square matrix with m rows and m orthogonal columns (so that
UUT = UT U = I) and the Vi vectors are row vectors with
1
2 (n+1)(n+2) columns (each vector being orthogonal to and
linearly independent from the rest). The null space of B can thus
be found by finding the null space of a much simpler matrix Ψ,
i.e. solving

Ψp0 = 0 (22)
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for p0, where

Ψ =


D1V1
D2V2

...
D 1

2 (n+1)(n+2)
V 1

2 (n+1)(n+2)

 . (23)

It should be noted that, since the V vectors are linearly inde-
pendent, the Ψ matrix will be full rank if and only if all the
D values are non-zero (or, from a practical numerical point of
view, have magnitudes which are all above some small thresh-
old value SingularityTolerance). In this case the only solution
for p0 is the null vector and the stencil is non-singular. If one
or more of the D values are zero, then Ψ must be less than full
rank, and so there will be an infinite number of possible solu-
tions for p0 and the stencil will be singular. This, then, is a
reliable test for determining whether or not a stencil is singular.

The null space of the B matrix (which is the same as the null
space of the Ψ matrix) can be thought of as a set of polynomial
coefficients which generate C∗ values of zero at all stencil data
points. If p0 is a non-trivial member of the null space of B,
therefore, the relation(
a jb

(
x̂ j, ŷ j

)
+ L̂ jnx, jbx̂

(
x̂ j, ŷ j

)
+ L̂ jny, jbŷ

(
x̂ j, ŷ j

))
p0 = 0 de-

fines an algebraic constraint which is obeyed at each data point
j in the stencil. The set of linearly independent p0 vectors in the
null space of B thus provides the complete basis to the set of al-
gebraic constraints of nth order obeyed by the coordinates of the
stencil’s data points. The fact that the stencil coordinates obey
any such nth order algebraic constraint at all can be thought of
as the geometrical cause of the stencil’s singularity. These con-
straint equations will be termed ‘spanning polynomials’.

Moreover, it is known from linear algebra theory that the V vec-
tors corresponding to the D values that are equal to zero form
a complete basis to the null space of the original matrix [8]. In
this case, therefore, they also provide a complete basis to the set
of spanning polynomial coefficients. Since the ordering of the
rows in (23) is arbitrary, it is reasonable to assume that the rows
in this equation are ordered such that the singular (D) values
are ordered from smallest magnitude to largest magnitude. (If
the singular value decomposition algorithm does not produce
output with this property, then the rows of (23) may be sorted.)
Suppose that there are s singular values equal to zero, where
1 ≤ s ≤ 1

2 (n+1)(n+2). (In the case when s = 0 the stencil is
not singular and so the only spanning polynomial is the trivial
polynomial, with all coefficients equal to zero.) In view of the
assumed ordering, the zero singular values will then be D1, D2,
... Ds, and their corresponding V vectors will be V1, V2, ... Vs.
The family of spanning polynomials can then be expressed as

p0 = η1VT
1 +η2VT

2 + . . .+ηsVT
s (24)

where η1, η2, ... ηs are real parameters which may be varied
arbitrarily to generate the family of spanning polynomials. Note
that the transpose operators are necessary because p0 is defined
as a column vector whereas the V vectors are defined as row
vectors. The parameter s can be thought of as the number of
dimensions in the space of spanning polynomials.

This information is incredibly valuable, since it allows the
singularity-causing geometric constraints obeyed by the data
points of a singular stencil to be identified. Moreover, if the
singularity is to be removed by adding new data points to the
stencil, then the effectiveness of any particular candidate data
point may be assessed by the degree to which it disobeys the
singularity-causing constraints. Suppose that the new data point
is located at (x̂N , ŷN) and has data point properties of a, L̂, nx

and ny (as defined in (8)). A given spanning polynomial p0 of
the original stencil will also span the new data point when[

ab(x̂N , ŷN)+ L̂nxbx̂ (x̂N , ŷN)+ L̂nybŷ (x̂N , ŷN)
]

p0 = 0. (25)

If this equation is combined with (24), then it may be written as

κ1η1 +κ2η2 + . . .+κsηs = 0, (26)

where κi =
[
ab(x̂N , ŷN)+ L̂nxbx̂ (x̂N , ŷN)+ L̂nybŷ (x̂N , ŷN)

]
VT

i .
Now if the new data point is spanned by all of the polynomials
VT

1 , VT
2 ... VT

s , then the entire family of spanning polynomials
of the original stencil also span the new data point; the new
data point therefore does not help to remove the singularity. If,
however, there is (at least) one polynomial VT

j which does not
span the new data point, then κ j 6= 0 and so η j may be expressed
in terms of the other parameter as

η j =− 1
κ j

∑
i=1..s, i 6= j

κiηi, (27)

providing that s > 1. This means that the family of polynomi-
als which spans both the original stencil and the new data point
can be written as a vector space with s−1 dimensions, i.e. one
dimension less than the family of polynomials spanning just the
original stencil. Thus it can be seen that the addition of a new
data point helps to reduce the size of the family of spanning
polynomials, as long as at least one of the polynomials defined
by the V vectors of the original stencil does not span the new
data point. Moreover, the dimensions of the family of span-
ning polynomials will be reduced by exactly one regardless of
whether there was only one V vector polynomial that did not
span the new data point or there were any number up to and
including s.

For the special case when s = 1, there is only one (linearly in-
dependent) polynomial that spans the original stencil. Adding
a new data point which is spanned by that polynomial will be
useless, whereas adding a new data point which is not spanned
by that polynomial will remove the singularity.

Based on this singularity theory, an algorithm for detecting and
correcting singular stencils has been developed. This algorithm
has been found to provide reliable detection and robust cor-
rection on a wide variety of unstructured meshes, both regular
and irregular. Moreover, the number of additional data points
required to do this was found to be reasonable (on average),
meaning that the algorithm is also an efficient way of solving
the singularity problem.

Use in a Convection-Diffusion Solver

Fundamental Equations

The two dimensional convection-diffusion equation can be writ-
ten as

∂ f
∂t

=−u
∂ f
∂x
− v

∂ f
∂y

+µ
(

∂2 f
∂x2 +

∂2 f
∂y2

)
, (28)

where u and v are the components of the uniform convection
velocity field in the x and y directions and µ is the diffusion
coefficient. f is the variable being convected, which could rep-
resent temperature, concentration, etc according to the applica-
tion. In finite volume form, this may be written in terms of a
line integral around the boundary of a control area, giving

AC.A.
∂ f
∂t

∣∣∣∣ C.A.
centroid

=−
I

C.A.B.

f undl +µ
I

C.A.B.

∂ f
∂n

dl, (29)

where
(

nx ny
)

is a unit vector which is locally normal to
the boundary and points outwards from the control area, dl is
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a length increment along the boundary, un is the component of
the convection velocity in the direction of

(
nx ny

)
and ∂ f

∂n
is the spatial derivative of f in that direction. AC.A. is the total
area of the control area.

In the special case where the control volume in question is
a mesh element bounded only by straight edges, with area
Aelement and its centroid at (xc,yc), the finite volume form of
the convection-diffusion equation can be represented (approxi-
mately) as

Aelement
∂ f
∂t

∣∣∣∣
(xc,yc)

= ∑
p∈element
edges

Lp

[
µ

∂ f ∗

∂n

∣∣∣∣
(xp,yp)

− f ∗
(
xp,yp

)
un,p

]
(30)

where the index p is used as a subscript to denote quantities
evaluated at the midpoint of bounding edge p and Lp is the
length of edge p. The asterisk indicates that the quantity in-
volved needs to be obtained using interpolation (except in the
special cases where it is known directly from boundary condi-
tions).

Interpolation Scheme

In order to simulate the convection-diffusion equation on an
unstructured mesh, it is necessary to use some kind of inter-
polation scheme to find approximate values for ∂ f ∗

∂n and f ∗ at
each edge midpoint, based on the prescribed boundary condi-
tions and known values of f at element centroids. To this end, a
moving least squares scheme with a third order polynomial (in
x̂ and ŷ) basis was used. The weighting function chosen (see
table 1) was Gaussian, with ε = 1.4. The stencils required for
this scheme were selected using the algorithm for building non-
singular stencils (with SingularityTolerance = 0.8).

Time Stepping Scheme

(30) provides an expression for the time derivative of f at the
centroid of each element, and this expression thus allows the
values of f at the element centroids to be time advanced using
any of the explicit time stepping schemes. In this simulation,
fourth order Runge-Kutta was chosen for this purpose.

The size of the time increment (∆t) was determined using a
combination of Fourier and Courant-Friedrichs-Lewy numbers.
Let the distance between data points i and j be ri, j, so that

ri, j =
√(

xi− x j
)2 +

(
yi− y j

)2
. (31)

The time step selected is then

∆t = min

 ri, j√
u2+v2

C f l + µ
Fo·ri, j

 , (32)

where C f l is the Courant-Friedrichs-Lewy number and Fo is the
Fourier number. For problems involving a spatially varying flow
field, u and v are taken as averages of their respective values at
data points i and j. It should be noted that when u = v = 0,
this expression collapses to the usual definition of the Fourier
number for pure diffusion problems. Also, when µ = 0, the
expression collapses to

∆t = min
{

C f l · ri, j√
u2 + v2

}
, (33)

which is a variant on the usual definition of the Courant-
Friedrichs-Lewy number.

This time step selection scheme is not intended to determine
the boundary of stability precisely, but merely to provide an
approximate measure of the time scale on which the solution
is expected to evolve. Most importantly, the time step scales
automatically with the problem parameters, so that a combina-
tion of Fourier and Courant-Friedrichs-Lewy numbers may be
determined which allows stable operation for a wide range of
different problems. Stable operation was found to occur when
using C f l = 0.5 and Fo = 0.5.

Initial Conditions

Initial conditions must be specified in order to define the
convection-diffusion problem completely. If f (x,y, t) is the so-
lution function, then it is necessary to specify the initial condi-
tions as

f (x,y,0) = f0 (x,y) , (34)

where f0 (x,y) is the scalar field defining the initial distribution
of f . This initial condition may be specified arbitrarily, accord-
ing to the requirements of the specific problem being simulated.

Boundary Conditions

The choice of boundary conditions for mixed convection-
diffusion problems is slightly subtle, and is highly dependent
on the physics of the specific problem being solved. In gen-
eral, both convection and diffusion processes will act to trans-
port heat across a given point on the boundary, and the process
which dominates will determine which boundary conditions are
more appropriate to use.

Consider the example domain shown in figure 1. Boundaries a
and b are inflow boundaries. It is necessary to specify the value
of f on these boundaries, since this represents the temperature
of the fluid flowing into the domain from outside. Boundary c is
parallel to the convection velocity, and so there is no convection
across it; boundary conditions may therefore be chosen accord-
ing to the thermal controls on this wall (i.e. specify f for a tem-
perature controlled wall or specify ∂ f

∂n for a heat flux controlled
wall). Boundaries d and e are outflow boundaries and are thus
allowed to float, with nothing specified there at all. However, on
a slightly inclined boundary such as e, it will sometimes be nec-
essary to specify a non-floating boundary condition for purely
numerical reasons. This is because the extrapolation required
for a floating boundary condition introduces a small error into
the solution in the region near the boundary, and this error may
grow in magnitude as the solution propagates alongside it. It is
the authors’ experience that this issue may be resolved by spec-
ifying the spatial derivative of f (normal to either the boundary
or the convection velocity) to be equal to zero, with minimal
impact on the overall solution.

Results

Propagation of a Gaussian Pulse

The two dimensional convection-diffusion equation was solved
on an irregularly shaped domain, filled with an irregular mesh
of quadrilaterals. (The shape of the domain is indicated by the
coloured region in figure 2.) Boundary conditions of f = 0 were
applied to the ‘west’ and ‘south’ boundaries, while ∂ f

∂n = 0 was
applied to the remaining boundaries. The initial conditions were
given by

f = f0e
− (x−x0)

2+(y−y0)
2

2σ2
0 , (35)

where x0 = y0 = 0.5m, f0 = 1 and σ0 = 0.1m in this example.
Convection velocities of u = v = 1m.s−1 were used, while the
parameter µ was assigned a value of 1.0× 10−3m2.s−1. This
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Figure 1: Example domain for the convection-diffusion prob-
lem. The arrows indicate the direction of the convection veloc-
ity.

problem has the analytical solution [9]

f =
σ0 f0√
σ2

0 +2µt
e
− (x−x0−ut)2+(y−y0−vt)2

2(σ2
0+2µt) , (36)

which is useful for verification purposes. The numerical and
analytical solutions at times t = 0s, t = 1s and t = 2s are shown
in figure 2. It may be seen that the numerical results correspond
closely in form to the analytical solution, which indicates that
the solver is accurate. In particular, there is very little dispersion
error. Close inspection of the contours, however, shows that
the peak value of the pulse in the numerical solution is slightly
lower than the peak value predicted by the analytical solution.
This indicates the presence of numerical diffusion, in addition
to the diffusion specified for the problem.

Mixing

The two dimensional convection-diffusion equation was solved
on a circular domain, where the fluid in the top region of the
domain was initially set to a hot temperature of f = 1, while
the fluid in the bottom region was initially set to a cold temper-
ature of f = −1. In order for the boundary between the two
regions to be sharply defined, the two regions of the domain
were meshed separately using unstructured triangular meshes.
Mixing was simulated through the combined effects of diffu-
sion (using µ = 5×10−4m2.s−1) and convection by a potential
vortex. The imposed velocity field is given by

u =− Γ

2π
· y√

x2 + y2 +δ2
(37)

and
v =

Γ

2π
· x√

x2 + y2 +δ2
, (38)

where Γ = 1.0m.s−1 is the strength of the potential vortex and
δ = 0.05m is a term included in order to avoid a velocity singu-
larity at the origin. The applied boundary condition of ∂ f

∂n = 0
ensures that heat cannot enter or leave the domain, and so the
system is expected to converge towards a steady state where
f = 0 (the initial average temperature) everywhere.

The time evolution of the numerical solution is shown in fig-
ure 3. While no analytical solution is available for verification,
it can be seen that the numerical solution nevertheless behaves
in the expected manner: the convection process causes fingers
of interleaved hot and cold fluid to form in a vortex structure,
while the diffusion process acts to reduce the temperature gra-
dient between these fingers. As time advances, the temperature

field becomes closer to being a uniform temperature of f = 0,
which is the expected steady state condition.

Conclusions

In this paper, a moving least squares interpolation scheme was
presented, for use with unstructured meshes. The precise con-
ditions under which singularities occur were identified, and the
singularity theory was used to create an algorithm which may be
used to build stencils which are guaranteed to be non-singular.
The algorithm was used in a moving least squares solution of the
convection-diffusion equation. Results were obtained for the
propagation of a Gaussian pulse, and these were compared to
the known analytical solution; they were found to be accurate,
except for the excess numerical diffusion. The success of the
scheme at solving this partial differential equation demonstrates
its reliability. Most importantly, the algorithm introduced in part
1 for building non-singular stencils is clearly effective, as sta-
ble simulations would not be possible if any singular stencils
remained.
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(a) t = 0s (numerical) (b) t = 0s (theoretical)

(c) t = 1s (numerical) (d) t = 1s (theoretical)

(e) t = 2s (numerical) (f) t = 2s (theoretical)

Figure 2: Convection-diffusion of a Gaussian pulse
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(a) t = 0s (b) t = 0.2s

(c) t = 0.99s (d) t = 5.15s

(e) t = 25.14s (f) t = 99.96s

Figure 3: Convective-diffusive mixing with a potential vortex. Red = 1, Blue = -1, Green = 0158


