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Abstract

We have used direct numerical simulation to examine both lam
inar and turbulent flows in circular pipes with smoothly eorr

gated walls, where the corrugation wavelength has been kept

constant at @19, and the corrugation height was varied from
zero to 008D. Flow rates have been varied in steps between
low values that provide laminar flow, up to higher values veher
the flow is turbulent: the maximum bulk flow Reynolds number
for the smooth pipe waRep = UD /v = 10x 10°, giving a fric-
tion Reynolds numbeRe; = 314. Even in the laminar regime,
the larger corrugation heights produce flow separation taad
proportion of pressure drop that is attributable to pressiiag
can be of order 50%, rising to approx 85% in turbulent flow.
In turbulent flow, near-wall structure is heavily influendey
the effects of flow separation and reattachment. However, fu
ther from the wall, statistics show standard outer-flow isgal
relationships, indicating that (as for standard roughrieesst-
ments) the outer flow is mainly affected by the value of wall
drag, rather than details of the wall shape. In addition {@ su
plying more detail on the above, we provide friction facter v
bulk flow Reynolds number values that compare our results wit
Nikuradse’s classic sand-roughened pipe flow data.

Introduction

There is now a reasonable amount of published direct numer-
ical simulation (DNS) data available for canonical turlmile
flows: two-dimensional channel, circular pipe, flat plateitd-

ary layer, backward-facing step. However, despite thetjmac
importance of rough-walled turbulent flows (since all reat-s
faces are ‘fully rough’ when Reynolds numbers are suffityent
high) few simulation studies exist that attempt to quarttifyou-

lent flows where the wall is roughened in any way. The present
work seeks to make a contribution by carrying out flow simula-
tions in a circular pipe with smoothly corrugated walls, whe
the streamwise wavelength of the corrugations is long (hun-
dreds of wall units), and the corrugation amplitude is aalalg
parameter.

All the domains under consideration have the same meansradiu
R=D/2, and (for turbulent flow calculations) the same axial
lengthL = 2mD. As is common in simulations of this type,
the flow has been assumed periodic in the axial direction, and
a body force is used to drive the flow, allowing the pressure
to remain periodic also. The length:diameter ratio was ehos
on the basis that previous pipe-flow DNS for= 5D [5] has
established that the absolute values of axial two-pointetar
tion coefficients for velocity were below 0.1 over the whade r
dius at an axial separation ofSb, and forRep = 5000. This
result suggests that &t= 2rD the domain is long enough to
remove most of the correlation associated with large-steie
bulent structure, which scales on the diameter.

For the wavy-wall geometries, 15 wavelengths were chosen
over the domain length ofD. With a peak-to-peak corru-
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gation height the radius of the pipeR(z), wherez is the axial
coordinate, is given byR(z)/D = 0.5+ 0.5hcos1%/D. (For
laminar-flow calculations conducted at Reynolds numbers be
low transition, only a single module of the axial wave was-rep
resented, i.e. the domain length was reducedde- 2D /15~
0.419D.) We note that since the wavelength is fixed, but the
wave-height of the corrugations is varied, the corrugatioh
different height employed here are not geometrically simil

The highest bulk-flow Reynolds number for the present data
setisRep =UD/v = 4(Q)/mDv = 10x 10®, for the pipe with
smooth walls. In order to establish basic parameters for tur
bulent flows, the Blasius friction factor correlation for cath

pipes [3],
A = 410/0.5pU2 = 0.3164/Rep /4 )

is used to estimate the wall shear stregshe friction velocity
U = (1o/p)Y/2, and the body force required to drive the flow.
From equation (1), we can derive the smooth-pipe relatipnsh

Rer = Ur /v = 99.436x 10 3Rep /8, @)

and find that forRep = 10x 10°, Re; = 314.4. From the defi-
nitions above, we also have the relationship

A = 32(Re/Rep )2, ®)
which means that for a given body force (iRe;), A 0 Rep 2.

There is a minor complication arising from the fact that the r
tio of surface area to volume for a wavy-walled pipe is not-con
stant as corrugation-heightis varied. Using Pappus’ Second
Theorem, the domain volume can be found in closed form as
n(§2 +h2/8)L, provided the length comprises an integral num-
ber of wavelengths. The surface area of the domain has to be
found numerically, as while Pappus’ First Theorem holds, th
arc length of the curve that describes the maximum radiustis n
available in closed form. When attempting to define both the
bulk flow and friction Reynolds numbers for the wavy walled
pipe, one needs an equivalent diameter. For simplicity, ave h
adopted the mean diametBr= 2R for this measure. Using
this equivalent diameter, an equivalent mean wall sheessis
found by equating the mean wall tractive force to the bodgdor
on the domain, i.e.
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whereg is an axially directed body force per unit mass, from
which

21 Rty = pn(ﬁz +h? /8) Lg,

> Tw R h2
=Y_-_(1+—= 5
B =0 (14 g )0 ©
With this choice of equivalent diameter, if one wishes togkee
the friction velocity and hencBe; = uR/v constant, the driv-

ing force per unit masg must be reduced ds(and hence, the
volume of the domairV) increases according to

g(h) = goVo/V = go/(1+h?/8R?). (6)



Label hj,  h/D  Rmn/D Vo S/S
A 0 0.00000 0.50000 1.00000 1.00000
B 5 0.00795 049602 1.00003 1.00794
C 10 0.01590 0.49205 1.00013 1.01533
D 20 0.03181 0.48410 1.00051 1.03186
E 30 004771 0.47615 1.00114 1.04788
F 40 0.06361 046819 1.00202 1.06397
G 50 0.07952 0.46024 1.00316 1.08013

Table 1: Summary of wavy walled geometric parameté

is the peak—peak corrugation height expressed in wall @awits
Rep = 10 x 103, V /Vp is the domain volume normalised by
that for the smooth pipe (case AJ/S is the domain surface
area normalised by that for the smooth pipe.

Figure 1: Spectral element meshes, each with 240 elements in

the meridional semiplane. Labels match those used in table 1
T S + . + .

A, sinooth-walleﬂ pipe; Bh : 5; C,hj =10; D,hj,, = 20;

E, hjy = 30; F,hj,, = 40; G,h,, = 50.

Here,\ is the volume of the smooth-walled pipe agglis the
corresponding axial driving force.

The maximum corrugation peak—peak amplitudehgD =
0.07952 was chosen to be 50 wall unitsRet, = 10x 103, i.e.
hIO“ = 50. Simulations have also been carried out for lower
corrugation heights of 40, 30, 20, 10, 5 and 0 wall units (all
normalised aRep = 10x 10°). Table 1 summarises the main
parameters of the wavy-walled geometries used in the presen
study. It can be seen that the fractional increase in voNiivg,

and hence the fractional reduction in driving force, is lgemn
half a percent even at the largest corrugation height, ca3é&
corrugation wavelength,.,, = 2nD/15, corresponds to 263.4
wall units atRep = 10x 10°.

Discretisation

The simulations have been carried out with a spectral ele-
ment/Fourier discretisation (Fourier expansions are eyeul

in the azimuthal coordinate, spectral elements in the ricevad
semi-plane). The method has exponential/spectral coexesy

in all coordinates [2], and has previously been used for DNS o
turbulent flows in smooth-walled pipes [7]. Three-dimensio
simulations are parallelised across Fourier planes. @aslof

the 240-spectral-element-meshes for cases A—-G are shown in
figure 1. Our mesh design strategy for resolution of neat-wal
flows is described in [1].
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Figure 2: Streamlines and contours of pressure (dark gy re
resents low pressure) for laminar flowRe; = 78.6, geometry
case G. Since the flow is laminar and steady, only a single mod-
ule of the wavy wall is represented in the laminar flow caleula
tions.
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Figure 3: Pressure drag as a proportion of total wall drag as a
function ofh/R for different wall Reynolds numbers in laminar
flow.

Laminar Flow

In the current set of simulations, initially turbulent flowmse
found to relaminarise and become steadyRer < 78.6, and

we have computed laminar flows downRe; = 27.8. In or-

der to reduce computational load, these simulation aregeiea
as axisymmetric and only a single module of corrugationgs re
resented, as shown in figure 2. The flow tends to remain at-
tached at the lower corrugation heights and at lower Regnold
numbers: aRe; = 27.8, cases F and G exhibit detachment (F
only marginally), while atRe; = 78.6 cases D-G exhibit de-
tachment (D marginally). In figure 2 (case Bg; = 78.6), flow
streamlines clearly show recirculation at radii greatemtthe
minimum. Also one can see that around the reattachment stag-
nation zone there are significantly elevated pressuresigtei
nonlinearity the pressure near the detachment point isinmet s
ilarly elevated and this imbalance leads to a significantréon
bution of pressure drag, in addition to viscous drag: thetined
contributions are shown for all corrugation heights anditemn
Reynolds numbers in figure 3. It can be seen that, as for flow
separation, the relative contribution of pressure dragesses
both with corrugation height and Reynolds number.

Figure 4 shows velocity profiles at the minimum radial loca-
tion (for z/D ~ 0.2095 in figure 2) for all corrugation heights
at Re; = 55.6. The axial velocityu is normalised by the bulk
(area average) spe&d and the radial coordinates in each case
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Figure 4: Velocity profiles at minimum pipe radius for lamina
flow at Re; = 55.6. Normalising velocities are calculated from

the volume flow rate and the cross-sectional area at minimum

radius,Rnin. Arrow indicates increasing corrugation-heigit,
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Figure 5: Normalised velocity defe@ —Uc)/u; for different
corrugation-height$ in laminar flow, Re; = 55.6. Geometry
case labels as for figure 1. Note that cases for differentigarr
tion height are offset vertically of clarity.

are normalised biRmin. The smooth-wall case is parabolic and
hasu/U (r = 0) = 2 as expected for Poisueille flow in a straight
pipe. As corrugation height increases, the flow near the wall

at Rmin speeds up relative to a parabolic profile, and so the nor-

malised centreline velocity falls to compensate. Howethes,
shape of the velocity profiles near the pipe centreline remai
closely parabolic in all cases.

Figure 5, which shows the axial-average velocity defect pro
files, emphasises that while wall corrugation obviousleetf
the flow near the wall, nearer the centre of the pipe the eifect
insignificant. (The figure is plotted in log-linear format aal
comparison with the forthcoming equivalent plot for tusmt
flow, figure 9.)

The Blasius (a.k.a. Darcy—Weisbach) friction factor isshas

a function of bulk-flow Reynolds number in figure 6 for the lam-
inar flow cases. It can be seen that the friction factor irewea
with corrugation height at all Reynolds numbers represgrate
though the relative increase falls with Reynolds numbeesgh
characteristics are in accord with remarks made abovedizgar
figure 3. As expected, the smooth-wall cases @ive 64/Rep

to very good accuracy.

Turbulent Flow

Now we turn to examine turbulent flow results, initially cene
trating on data for the highest friction Reynolds numBey =
314 (corresponding in the smooth pipeRey = 10x 10°).
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Figure 6: Pipe friction factok as a function oRep for laminar
flows at four different values oRe;. In each set, the lowest
value ofA corresponds to the smooth pipe, case A (where
64/Rep), the upper point to case G.

Validation of Smooth-Wall Simulation at Re;=314

In order to help build confidence in the veracity of the tuemil
flow calculations, we show in figure 7 a comparison of first-
and second-moment statistics obtained in our computatmns
LDA-based experimental results obtainedRep = 10 x 10°
(i.e.Re; = 314) [4]. Agreement for the mean-flow profile is ex-
cellent and generally the agreement for all statisticsepresl

is very good except in the near-wall region where inaccesaci
in the experimental estimates of fluctuating axial and fadia
locities are evident. Our fit to the presumed log-law sectibn
the mean velocity profile gives

ur=J -1y,
Ut K

Ury

V tC= 2.5Iny* 4-5.4, )

i.e. a von Karman constart= 0.40 and a log-law offse€ =
5.4.

Turbulent Flow Data at Re{=314

Figure 8 shows the mean-flow velocity profilesRe; = 314

for all corrugation heights. Note that as corrugation-heig-
creases, these profiles commence at progressively grasuesv

of y*, since the minimum sensible radius at which to begin av-
eraging,Rmin, becomes progressively smaller, whereas the dis-
tance from the wally, is calculated as beginning on the mean
radius,R. Maximum centreline velocities fall with increasing
corrugation height, as expected, however the shape of tbe-ve
ity profiles near the centreline remains substantially #raes
The similarity of the velocity profiles near the centreliseem-
phasised by plotting them as velocity-defect profiles, show
figure 9.

The offset in the mean velocity profiles can be estimated by
plotting U /uy — k~tIny™ vs. y*, where log-law segments of
mean velocity profiles will appear as horizontal lines whose
dinate corresponds to the log-law const@nt This procedure
and the corresponding values Gffor all corrugation heights
are illustrated in figure 10.

A simple (but admittedly slightly imprecise) means of asses
ing the presence or otherwise of mean flow separation is to
compute the mean viscous wall traction at minimum and max-
imum pipe radii. This can be accomplished by differentigitin
the mean flow velocity profiles, with outcomes flee; = 314
shown in figure 11. Evidently, flows for geometries A—C re-
main attached on average, since the viscous wall tracties do
not become negative. Perhaps surprisingly, this is quibéai

to the maximumRe; result for laminar flow, see above.
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Figure 8: Mean-flow law-of-the-wall velocity profiles Re; =
314 for different corrugation-height cases.
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ent corrugation-heighth in turbulent flow,Re; = 314. Note
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L ] of clarity. Cf. figure 5.
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Figure 10: Correction constant in the logarithmic law-oé-t
wall for different corrugation-height casesRe; = 314, on the
assumption that the log-law slope constant is 0.40.
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Figure 11: Mean-flow viscous wall traction at minimum and
maximum pipe radii for different corrugation-heightsRe; =
314. Values are normalised by the mean tractigp,and are
obtained by differentiating the mean-flow profiles.
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Figure 12: Pressure drag as a proportion of total wall drag as
function ofh/R for turbulent flow atRe; = 314. Cf. figure 3.

It may initially seem paradoxical that the absolute valuethe
departure of the minimurRRand maximumR viscous wall trac-
tion shown in figure 11 fronty, first increase, then decrease
with increasing corrugation height. However, this mairgy r
flects the increasing relative importance of the pressume-co
ponent of average wall drag, as illustrated for turbulent filo
figure 12. The overall contribution of pressure drag at thg-ma
imum corrugation height, case G, is quite large, approxétyat
85%, indicating that the flow is approaching full-rough (e
by definition all the drag derives from pressure differejices

Comparison to Nikuradse’s Roughened-Pipe Data

While a smoothly corrugated wall would not normally be ac-
cepted as ‘rough’, and certainly has no degree of geometric
randomness, it is interesting to attempt to assess theaqotv
sand roughness of our geometries. The standard comparison
in this case is to Nikuradse's classic 1933 experimented dat
[6], obtained by glueing sand of different narrow-band siize
tributions to the inside of smooth circular pipes. Two ekact
equivalent measures of the effect of sand roughness can-be ob
tained from the log-law offse€ (equation 7) and Nikuradse's
‘roughness function’

B=C+k tInkt, (8)
where the dimensionless sand roughness héiht uck/v,
k being the characteristic sand size. Nikuradse found that in
the ‘fully rough’ regime wheré\ becomes independent Bép
(alternativelyRe;) and is only a function ok™, the roughness
function asymptotes tB = 8.5: equivalently the log-law offset
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Figure 13: Nikuradse's data [6] for roughness functidand
log-law correction constant as functions of dimensionless
sand roughness height™. Data for the corrugated wall at
Rer = 314 are also shown (cf. figure 10), both in raw state, and
corrected to an equivalent sand roughness height.

C — 85—k LInkt. Nikuradse's data foB andC are plotted as
small open and closed circles in figure 13. The two asymptotic
values for largek™ are shown as dashed lines (and at kv
another set of dashed lines indicate the smooth-pipe agyespt
for C =5.4 andk = 0.40).

Our data, derived from the log-law offsets Réy = 314 (see
figure 10). and initially assuming th&t= k, are plotted on
figure 13 as thin-lined open squares, labelled B-G. The salue
for both roughness measurBsand C fall below Nikuradse'’s
data for sand roughness, indicating that the wavy wall ofgiv
height has a greater effect in reducing mean flow rate than a
coating of sand of equivalent size. This makes sense physi-
cally, since after some consideration one may well accegit th
an organised corrugation of given height could have more ef-
fect in disrupting near-wall flows than a random array of sand
of equivalent size.

A question that arises is: by what factor does one need to mul-
tiply the corrugation heighh in order to make the functions

B andC agree with Nikuradse’s data? Naturally, the validity
of this process is open to debate, not least because our maxi-
mum Reynolds numbers fall well below Nikuradse’s. Neverthe
less, on the assumption that the data at the greatest ctomga
heights are approaching ‘fully rough’ (and this does notrsee
too unreasonable on the basis of their tavvalues), we find
that the correction factor which makes our high-corrugatio
height data and Nikuradse’s coincide is approximately Ph
corrected values oB andk* derived from our data are indi-
cated by thick-lined open squares on figure 13, with arrows to
indicate the amounts by which the raw data are shifted tdrobta
the corrected ‘equivalent sand roughness’ values.

As a further comparison to Nikuradse’s data set, we show in
figure 14 our values of friction factdr vs. Rep for geometries
B-E fromRe; = 314 and at successively lowBep down into

the laminar regime (where only values for case E are shown in
order to avoid clutter). Nikuradse’s data for differentatele
roughnesseR/k are shown as small open circles. It is interest-
ing to note that the bulk flow Reynolds number for the onset of
transition from laminar to turbulent flodRep ~ 2500, is much

the same in both data sets and indeed that the transitiole va
of A for case E falls within the scatter band of Nikuradse’s data.
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Figure 14: Nikuradse’s data [6] for pipe friction factor as -
tions of Rep and relative roughnes®/k (open circles). Also
shown is the variation of friction factor witRep for the corru-
gated wall at varioufe;, computed for cases B—E (filled cir-
cles), together with the relative corrugation heig¥ih.

Transition to turbulence appears to occur much more rapidly
with changingRep for the corrugated wall cases than for sand
roughness. (We note that while asymptotic stability analys
shows that smooth-wall pipe flow is not linearly unstablergt a
Reynolds number, this may not be true for flow in pipes with
corrugated walls.)

In the turbulent regime the values dffor our simulations are
comparable in magnitude to Nikuradse’s at similar values of
R/h andR/k, but it is difficult to draw firm conclusions. If one
accepts the logic outlined above for the correction of agaru
tion height to equivalent sand roughness, then one wouldaxp
our data forR/h = 62.9 (case B) to eventually, with increasing
Rep, asymptote close to Nikuradse’s data Rytk = 30.6, like-
wise our data folR/h = 31.4 to asymptote near Nikuradse's
data forR/k = 15. Evidently further work is needed, but it is
unlikely that full resolution of these issues can be prodidg
DNS alone in the foreseeable future.

Conclusions

For both laminar and turbulent flows in pipes with smooth cor-
rugated walls, the outer mean flow (near the pipe centreline)
appears unable to sense the detail of wall corrugation, itsly
effect on wall friction at any bulk flow rate. As wall corruga-
tion height increases, pressure drag makes an increasamgty
contribution to the total friction, even in the absence oéém)
flow separation, and in laminar as well as turbulent flow. At th
highestRe; considered, and for the largest corrugation heights,
we have estimated that an equivalent sand roughness can be ob
tained by multiplying the corrugation height by a factor pf a
proximately two.
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Abstract

A method for extracting the eigenvalues and eigenmodes from
complex coupled fluid-structure interaction (FSI) systems is
presented. The FSI system under consideration in this case is
a one-sided, inviscid flow over a finite-length compliant surface
with complex boundary conditions, although the method could
be applied to any FSI system. The flow is solved for the invis-
cid case using a boundary-element method solution of Laplace’s
equation, while the finite compliant surface is solved through
a finite-difference solution of the one-dimensional beam equa-
tion. The crux of the method lies in reducing the coupled fluid
and structural equations down to a set of coupled linear differ-
ential equations. Standard Krylov subspace projection methods
may then be used to determine the eigenvalues of the large sys-
tem of linear equations. This method is applied to the analysis
of hydroelastic FSI systems with complex boundary conditions
that would be difficult or otherwise impossible to analyse us-
ing standard Galerkin methods. Specifically, the complex cases
of inhomogeneous and discontinuous compliant wall properties
and arbitrary hinge-joint conditions along the compliant surface
are considered.

Introduction

Numerical methods are used to investigate the stability of a
finite-length compliant wall interacting with an incompressible,
high-Reynolds number, boundary layer flow over one side. In
the limit of infinite Reynolds number, the flow may be mod-
elled using an inviscid approximation. A schematic of the fluid-
structure system is presented in Figure 1. The compliant wall
is composed of a simple elastic plate that may have an added
spring foundation and structural damping.

Mean-flow Us,

—

Downstream/exit
flow profile

Upstream/approaching
flow profile
—

Perturbed flow profile

.

TNy

Compliant wall section

> >

>
<

D S
Rigid wall
upstream

»

>
Rigid wall
downstream

Figure 1: Schematic of the flow-structure system studied; the
spring and dashpot foundations are absent for an unsupported
elastic plate.

The problem of a one-sidedfinitely-longcompliant wall inter-
acting with an inviscid flow is well documented through theo-
retical studies by Carpenter and Garrad [1].

This paper presents a technique whereby the fluid-structure sys-
tem for a finite wall is represented as a single governing set of

linear equations. Some simple results will be presented that
may be validated against existing results obtained through the-
oretical or Galerkin methods. Finally, the new method will be
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used to perform an illustrative investigation into the complex
wall behaviour with more complex inhomogeneous conditions
and multiple hinged boundary conditions imposed.

System equations

The linear motion of the compliant wall is governed by the two-
dimensional beam equation. Extra terms are added to account
for the addition of homogeneous backing springg)and uni-

form dashpot-type dampingidn/ot) to model the effects of
energy dissipation in the wall structure.
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at o +Kn = -Ap(x,0,t)

@
wheren(x,t), pm, h andB are, respectively, the plate’s deflec-
tion, density, thickness and flexural rigidity, whifgx, y,t) is

the unsteady fluid pressure. In the present problem we apply
hinged-edge conditions at the leading and trailing edges of the
plate although in the method that follows there is no necessary
restriction on such boundary conditions.

The fluid is modelled using the assumptions of incompress-
ible and irrotational flow. This is an appropriate approximation
for the high Reynolds number flow outside the boundary layer,
however rotationality and viscous effects of the boundary layer
are ignored. This therefore implies the approximation that the
boundary layer is thin with respect to the wall disturbance wave-
length and amplitude. A velocity perturbation potengigl, y,t)
which satisfies Laplace’s equation is introduced and the solution
of which is then used in the linearised unsteady Bernoulli equa-
tion, 5 5
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wherep andU,, are, respectively, the fluid density and flow
speed. The plate and fluid motions are coupled through the
boundary condition of zero normal velocity at the wall and a
balance of unsteady pressure forces.

Ap=—p=-—pUs

Eigenvalue Determination

A Single Governing Equation for the System

Where Lucey and Carpenter [2] used an explicit time-marching
scheme for the solution of the wall position, the objective here is
to avoid temporal discretisation by direct solution of a single set
of ordinary differential equations. The compliant wall position,
n(x,t), will be the single resulting variable.

Due to the linearity of Laplace’s equation, the boundary element
solution for the fluid equation may be expressed as the sum of a
mean flow plus a distribution of singularities along the deform-
ing compliant wall. In this case, zero order linear source(-sink)
elements are chosen for the singularities, with the strength of
each element denotex{x). With the discretisation of the com-
pliant surface intd\ elements, each with constant strength

the vector of element strengths may be determined through a



