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Abstract

We have used direct numerical simulation to examine both lam-
inar and turbulent flows in circular pipes with smoothly corru-
gated walls, where the corrugation wavelength has been kept
constant at 0.419D, and the corrugation height was varied from
zero to 0.08D. Flow rates have been varied in steps between
low values that provide laminar flow, up to higher values where
the flow is turbulent: the maximum bulk flow Reynolds number
for the smooth pipe wasReD =UD/ν = 10×103, giving a fric-
tion Reynolds numberReτ = 314. Even in the laminar regime,
the larger corrugation heights produce flow separation, andthe
proportion of pressure drop that is attributable to pressure drag
can be of order 50%, rising to approx 85% in turbulent flow.
In turbulent flow, near-wall structure is heavily influencedby
the effects of flow separation and reattachment. However, fur-
ther from the wall, statistics show standard outer-flow scaling
relationships, indicating that (as for standard roughnesstreat-
ments) the outer flow is mainly affected by the value of wall
drag, rather than details of the wall shape. In addition to sup-
plying more detail on the above, we provide friction factor vs.
bulk flow Reynolds number values that compare our results with
Nikuradse’s classic sand-roughened pipe flow data.

Introduction

There is now a reasonable amount of published direct numer-
ical simulation (DNS) data available for canonical turbulent
flows: two-dimensional channel, circular pipe, flat plate bound-
ary layer, backward-facing step. However, despite the practical
importance of rough-walled turbulent flows (since all real sur-
faces are ‘fully rough’ when Reynolds numbers are sufficiently
high) few simulation studies exist that attempt to quantifyturbu-
lent flows where the wall is roughened in any way. The present
work seeks to make a contribution by carrying out flow simula-
tions in a circular pipe with smoothly corrugated walls, where
the streamwise wavelength of the corrugations is long (hun-
dreds of wall units), and the corrugation amplitude is a variable
parameter.

All the domains under consideration have the same mean radius
R̄ = D/2, and (for turbulent flow calculations) the same axial
length L = 2πD. As is common in simulations of this type,
the flow has been assumed periodic in the axial direction, and
a body force is used to drive the flow, allowing the pressure
to remain periodic also. The length:diameter ratio was chosen
on the basis that previous pipe-flow DNS forL = 5D [5] has
established that the absolute values of axial two-point correla-
tion coefficients for velocity were below 0.1 over the whole ra-
dius at an axial separation of 2.5D, and forReD = 5000. This
result suggests that atL = 2πD the domain is long enough to
remove most of the correlation associated with large-scaletur-
bulent structure, which scales on the diameter.

For the wavy-wall geometries, 15 wavelengths were chosen
over the domain length of 2πD. With a peak-to-peak corru-

gation heighth the radius of the pipe,R(z), wherez is the axial
coordinate, is given byR(z)/D = 0.5+ 0.5hcos15z/D. (For
laminar-flow calculations conducted at Reynolds numbers be-
low transition, only a single module of the axial wave was rep-
resented, i.e. the domain length was reduced toLm = 2πD/15≈
0.419D.) We note that since the wavelength is fixed, but the
wave-height of the corrugations is varied, the corrugations of
different height employed here are not geometrically similar.

The highest bulk-flow Reynolds number for the present data
set isReD = UD/ν = 4〈Q〉/πDν = 10×103, for the pipe with
smooth walls. In order to establish basic parameters for tur-
bulent flows, the Blasius friction factor correlation for smooth
pipes [3],

λ = 4τ0/0.5ρU2 = 0.3164/ReD
1/4 (1)

is used to estimate the wall shear stressτ0, the friction velocity
uτ = (τ0/ρ)1/2, and the body force required to drive the flow.
From equation (1), we can derive the smooth-pipe relationship

Reτ = uτ/ν = 99.436×10−3ReD
7/8, (2)

and find that forReD = 10×103, Reτ = 314.4. From the defi-
nitions above, we also have the relationship

λ = 32(Reτ/ReD)2 , (3)

which means that for a given body force (i.e.Reτ), λ ∝ ReD
−2.

There is a minor complication arising from the fact that the ra-
tio of surface area to volume for a wavy-walled pipe is not con-
stant as corrugation-heighth is varied. Using Pappus’ Second
Theorem, the domain volume can be found in closed form as
π(R̄2 +h2/8)L, provided the length comprises an integral num-
ber of wavelengths. The surface area of the domain has to be
found numerically, as while Pappus’ First Theorem holds, the
arc length of the curve that describes the maximum radius is not
available in closed form. When attempting to define both the
bulk flow and friction Reynolds numbers for the wavy walled
pipe, one needs an equivalent diameter. For simplicity, we have
adopted the mean diameterD = 2R̄ for this measure. Using
this equivalent diameter, an equivalent mean wall shear stress is
found by equating the mean wall tractive force to the body force
on the domain, i.e.

2πLR̄τw = ρπ
(

R̄2 +h2/8
)

Lg, (4)

whereg is an axially directed body force per unit mass, from
which

u2
τ =

τw

ρ
=

R̄
2

(

1+
h2

8R̄2

)

g (5)

With this choice of equivalent diameter, if one wishes to keep
the friction velocity and henceReτ = uτR̄/ν constant, the driv-
ing force per unit massg must be reduced ash (and hence, the
volume of the domain,V ) increases according to

g(h) = g0V0/V = g0/(1+h2/8R̄2). (6)
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Label h+
104 h/D Rmin/D V/V0 S/S0

A 0 0.00000 0.50000 1.00000 1.00000
B 5 0.00795 0.49602 1.00003 1.00794
C 10 0.01590 0.49205 1.00013 1.01533
D 20 0.03181 0.48410 1.00051 1.03186
E 30 0.04771 0.47615 1.00114 1.04788
F 40 0.06361 0.46819 1.00202 1.06397
G 50 0.07952 0.46024 1.00316 1.08013

Table 1: Summary of wavy walled geometric parameters.h+
104

is the peak–peak corrugation height expressed in wall unitsat
ReD = 10× 103. V/V0 is the domain volume normalised by
that for the smooth pipe (case A).S/S0 is the domain surface
area normalised by that for the smooth pipe.
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Figure 1: Spectral element meshes, each with 240 elements in
the meridional semiplane. Labels match those used in table 1:
A, smooth-walled pipe; B,h+

104 = 5; C,h+
104 = 10; D,h+

104 = 20;
E, h+

104 = 30; F,h+
104 = 40; G,h+

104 = 50.

Here,V0 is the volume of the smooth-walled pipe andg0 is the
corresponding axial driving force.

The maximum corrugation peak–peak amplitude ofh/D =
0.07952 was chosen to be 50 wall units atReD = 10×103, i.e.
h+

104 = 50. Simulations have also been carried out for lower
corrugation heights of 40, 30, 20, 10, 5 and 0 wall units (all
normalised atReD = 10×103). Table 1 summarises the main
parameters of the wavy-walled geometries used in the present
study. It can be seen that the fractional increase in volumeV/V0,
and hence the fractional reduction in driving force, is lessthan
half a percent even at the largest corrugation height, case G. The
corrugation wavelength,Lm = 2πD/15, corresponds to 263.4
wall units atReD = 10×103.

Discretisation

The simulations have been carried out with a spectral ele-
ment/Fourier discretisation (Fourier expansions are employed
in the azimuthal coordinate, spectral elements in the meridional
semi-plane). The method has exponential/spectral convergence
in all coordinates [2], and has previously been used for DNS of
turbulent flows in smooth-walled pipes [7]. Three-dimensional
simulations are parallelised across Fourier planes. Outlines of
the 240-spectral-element-meshes for cases A–G are shown in
figure 1. Our mesh design strategy for resolution of near-wall
flows is described in [1].

Figure 2: Streamlines and contours of pressure (dark grey rep-
resents low pressure) for laminar flow atReτ = 78.6, geometry
case G. Since the flow is laminar and steady, only a single mod-
ule of the wavy wall is represented in the laminar flow calcula-
tions.

Figure 3: Pressure drag as a proportion of total wall drag as a
function ofh/R for different wall Reynolds numbers in laminar
flow.

Laminar Flow

In the current set of simulations, initially turbulent flowsare
found to relaminarise and become steady forReτ ≤ 78.6, and
we have computed laminar flows down toReτ = 27.8. In or-
der to reduce computational load, these simulation are treated
as axisymmetric and only a single module of corrugation is rep-
resented, as shown in figure 2. The flow tends to remain at-
tached at the lower corrugation heights and at lower Reynolds
numbers: atReτ = 27.8, cases F and G exhibit detachment (F
only marginally), while atReτ = 78.6 cases D–G exhibit de-
tachment (D marginally). In figure 2 (case G,Reτ = 78.6), flow
streamlines clearly show recirculation at radii greater than the
minimum. Also one can see that around the reattachment stag-
nation zone there are significantly elevated pressures; owing to
nonlinearity the pressure near the detachment point is not sim-
ilarly elevated and this imbalance leads to a significant contri-
bution of pressure drag, in addition to viscous drag: the relative
contributions are shown for all corrugation heights and laminar
Reynolds numbers in figure 3. It can be seen that, as for flow
separation, the relative contribution of pressure drag increases
both with corrugation height and Reynolds number.

Figure 4 shows velocity profiles at the minimum radial loca-
tion (for z/D ≈ 0.2095 in figure 2) for all corrugation heights
at Reτ = 55.6. The axial velocityu is normalised by the bulk
(area average) speedU , and the radial coordinates in each case
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Figure 4: Velocity profiles at minimum pipe radius for laminar
flow at Reτ = 55.6. Normalising velocities are calculated from
the volume flow rate and the cross-sectional area at minimum
radius,Rmin. Arrow indicates increasing corrugation-height,h.

Figure 5: Normalised velocity defect(U −Uc)/uτ for different
corrugation-heightsh in laminar flow,Reτ = 55.6. Geometry
case labels as for figure 1. Note that cases for different corruga-
tion height are offset vertically of clarity.

are normalised byRmin. The smooth-wall case is parabolic and
hasu/U(r = 0) = 2 as expected for Poisueille flow in a straight
pipe. As corrugation heighth increases, the flow near the wall
at Rmin speeds up relative to a parabolic profile, and so the nor-
malised centreline velocity falls to compensate. However,the
shape of the velocity profiles near the pipe centreline remain
closely parabolic in all cases.

Figure 5, which shows the axial-average velocity defect pro-
files, emphasises that while wall corrugation obviously affects
the flow near the wall, nearer the centre of the pipe the effectis
insignificant. (The figure is plotted in log-linear format toaid
comparison with the forthcoming equivalent plot for turbulent
flow, figure 9.)

The Blasius (a.k.a. Darcy–Weisbach) friction factor is shown as
a function of bulk-flow Reynolds number in figure 6 for the lam-
inar flow cases. It can be seen that the friction factor increases
with corrugation height at all Reynolds numbers represented, al-
though the relative increase falls with Reynolds number. These
characteristics are in accord with remarks made above regarding
figure 3. As expected, the smooth-wall cases giveλ = 64/ReD
to very good accuracy.

Turbulent Flow

Now we turn to examine turbulent flow results, initially concen-
trating on data for the highest friction Reynolds numberReτ =
314 (corresponding in the smooth pipe toReD = 10×103).

Figure 6: Pipe friction factorλ as a function ofReD for laminar
flows at four different values ofReτ. In each set, the lowest
value ofλ corresponds to the smooth pipe, case A (whereλ =
64/ReD), the upper point to case G.

Validation of Smooth-Wall Simulation at Reτ=314

In order to help build confidence in the veracity of the turbulent
flow calculations, we show in figure 7 a comparison of first-
and second-moment statistics obtained in our computationsto
LDA-based experimental results obtained atReD = 10× 103

(i.e.Reτ = 314) [4]. Agreement for the mean-flow profile is ex-
cellent and generally the agreement for all statistics presented
is very good except in the near-wall region where inaccuracies
in the experimental estimates of fluctuating axial and radial ve-
locities are evident. Our fit to the presumed log-law sectionof
the mean velocity profile gives

U+ =
U
uτ

=
1
κ

ln
uτy
ν

+C = 2.5lny+ +5.4, (7)

i.e. a von Kármán constantκ = 0.40 and a log-law offsetC =
5.4.

Turbulent Flow Data at Reτ=314

Figure 8 shows the mean-flow velocity profiles atReτ = 314
for all corrugation heights. Note that as corrugation-height in-
creases, these profiles commence at progressively greater values
of y+, since the minimum sensible radius at which to begin av-
eraging,Rmin, becomes progressively smaller, whereas the dis-
tance from the wall,y, is calculated as beginning on the mean
radius,R̄. Maximum centreline velocities fall with increasing
corrugation height, as expected, however the shape of the veloc-
ity profiles near the centreline remains substantially the same.
The similarity of the velocity profiles near the centreline is em-
phasised by plotting them as velocity-defect profiles, shown in
figure 9.

The offset in the mean velocity profiles can be estimated by
plotting U/uτ − κ−1 lny+ vs. y+, where log-law segments of
mean velocity profiles will appear as horizontal lines whoseor-
dinate corresponds to the log-law constantC. This procedure
and the corresponding values ofC for all corrugation heights
are illustrated in figure 10.

A simple (but admittedly slightly imprecise) means of assess-
ing the presence or otherwise of mean flow separation is to
compute the mean viscous wall traction at minimum and max-
imum pipe radii. This can be accomplished by differentiating
the mean flow velocity profiles, with outcomes forReτ = 314
shown in figure 11. Evidently, flows for geometries A–C re-
main attached on average, since the viscous wall traction does
not become negative. Perhaps surprisingly, this is quite similar
to the maximum-Reτ result for laminar flow, see above.
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Figure 7: Comparison of flow profile data for the smooth-walled
pipe atReD = 10×103 (solid lines) with LDA-based values [4]
(squares). (a), mean flow, with dashed lines for linear sublayer
and fitted log law; (b), rms axial velocity fluctuation; (c), rms
radial velocity fluctuation; (d), Reynolds shear stress.

Figure 8: Mean-flow law-of-the-wall velocity profiles atReτ =
314 for different corrugation-height cases.

Figure 9: Normalised velocity defect(U −Uc)/uτ for differ-
ent corrugation-heightsh in turbulent flow,Reτ = 314. Note
that cases for different corrugation height are offset vertically
of clarity. Cf. figure 5.

Figure 10: Correction constant in the logarithmic law-of-the-
wall for different corrugation-height cases atReτ = 314, on the
assumption that the log-law slope constant is 0.40.
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Figure 11: Mean-flow viscous wall traction at minimum and
maximum pipe radii for different corrugation-heights atReτ =
314. Values are normalised by the mean traction,τw, and are
obtained by differentiating the mean-flow profiles.

Figure 12: Pressure drag as a proportion of total wall drag asa
function ofh/R for turbulent flow atReτ = 314. Cf. figure 3.

It may initially seem paradoxical that the absolute values of the
departure of the minimum-R and maximum-R viscous wall trac-
tion shown in figure 11 fromτw first increase, then decrease
with increasing corrugation height. However, this mainly re-
flects the increasing relative importance of the pressure com-
ponent of average wall drag, as illustrated for turbulent flow in
figure 12. The overall contribution of pressure drag at the max-
imum corrugation height, case G, is quite large, approximately
85%, indicating that the flow is approaching full-rough (where
by definition all the drag derives from pressure differences).

Comparison to Nikuradse’s Roughened-Pipe Data

While a smoothly corrugated wall would not normally be ac-
cepted as ‘rough’, and certainly has no degree of geometric
randomness, it is interesting to attempt to assess the equivalent
sand roughness of our geometries. The standard comparison
in this case is to Nikuradse’s classic 1933 experimental data
[6], obtained by glueing sand of different narrow-band sizedis-
tributions to the inside of smooth circular pipes. Two exactly
equivalent measures of the effect of sand roughness can be ob-
tained from the log-law offsetC (equation 7) and Nikuradse’s
‘roughness function’

B = C +κ−1 lnk+, (8)

where the dimensionless sand roughness heightk+ = uτk/ν,
k being the characteristic sand size. Nikuradse found that in
the ‘fully rough’ regime whereλ becomes independent ofReD
(alternativelyReτ) and is only a function ofk+, the roughness
function asymptotes toB = 8.5: equivalently the log-law offset

Figure 13: Nikuradse’s data [6] for roughness functionB and
log-law correction constantC as functions of dimensionless
sand roughness heightk+. Data for the corrugated wall at
Reτ = 314 are also shown (cf. figure 10), both in raw state, and
corrected to an equivalent sand roughness height.

C→ 8.5−κ−1 lnk+. Nikuradse’s data forB andC are plotted as
small open and closed circles in figure 13. The two asymptotic
values for largek+ are shown as dashed lines (and at lowk+

another set of dashed lines indicate the smooth-pipe asymptotes
for C = 5.4 andκ = 0.40).

Our data, derived from the log-law offsets atReτ = 314 (see
figure 10). and initially assuming thath ≡ k, are plotted on
figure 13 as thin-lined open squares, labelled B–G. The values
for both roughness measuresB andC fall below Nikuradse’s
data for sand roughness, indicating that the wavy wall of given
height has a greater effect in reducing mean flow rate than a
coating of sand of equivalent size. This makes sense physi-
cally, since after some consideration one may well accept that
an organised corrugation of given height could have more ef-
fect in disrupting near-wall flows than a random array of sand
of equivalent size.

A question that arises is: by what factor does one need to mul-
tiply the corrugation heighth in order to make the functions
B andC agree with Nikuradse’s data? Naturally, the validity
of this process is open to debate, not least because our maxi-
mum Reynolds numbers fall well below Nikuradse’s. Neverthe-
less, on the assumption that the data at the greatest corrugation
heights are approaching ‘fully rough’ (and this does not seem
too unreasonable on the basis of their rawk+ values), we find
that the correction factor which makes our high-corrugation-
height data and Nikuradse’s coincide is approximately 2.0.The
corrected values ofB and k+ derived from our data are indi-
cated by thick-lined open squares on figure 13, with arrows to
indicate the amounts by which the raw data are shifted to obtain
the corrected ‘equivalent sand roughness’ values.

As a further comparison to Nikuradse’s data set, we show in
figure 14 our values of friction factorλ vs. ReD for geometries
B–E fromReτ = 314 and at successively lowerReD down into
the laminar regime (where only values for case E are shown in
order to avoid clutter). Nikuradse’s data for different relative
roughnessesR/k are shown as small open circles. It is interest-
ing to note that the bulk flow Reynolds number for the onset of
transition from laminar to turbulent flow,ReD ∼ 2500, is much
the same in both data sets and indeed that the transitional value
of λ for case E falls within the scatter band of Nikuradse’s data.
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Figure 14: Nikuradse’s data [6] for pipe friction factor as func-
tions of ReD and relative roughnessR/k (open circles). Also
shown is the variation of friction factor withReD for the corru-
gated wall at variousReτ, computed for cases B–E (filled cir-
cles), together with the relative corrugation heightR/h.

Transition to turbulence appears to occur much more rapidly
with changingReD for the corrugated wall cases than for sand
roughness. (We note that while asymptotic stability analysis
shows that smooth-wall pipe flow is not linearly unstable at any
Reynolds number, this may not be true for flow in pipes with
corrugated walls.)

In the turbulent regime the values ofλ for our simulations are
comparable in magnitude to Nikuradse’s at similar values of
R/h andR/k, but it is difficult to draw firm conclusions. If one
accepts the logic outlined above for the correction of corruga-
tion height to equivalent sand roughness, then one would expect
our data forR/h = 62.9 (case B) to eventually, with increasing
ReD, asymptote close to Nikuradse’s data forR/k = 30.6, like-
wise our data forR/h = 31.4 to asymptote near Nikuradse’s
data forR/k = 15. Evidently further work is needed, but it is
unlikely that full resolution of these issues can be provided by
DNS alone in the foreseeable future.

Conclusions

For both laminar and turbulent flows in pipes with smooth cor-
rugated walls, the outer mean flow (near the pipe centreline)
appears unable to sense the detail of wall corrugation, onlyits
effect on wall friction at any bulk flow rate. As wall corruga-
tion height increases, pressure drag makes an increasinglylarge
contribution to the total friction, even in the absence of (mean)
flow separation, and in laminar as well as turbulent flow. At the
highestReτ considered, and for the largest corrugation heights,
we have estimated that an equivalent sand roughness can be ob-
tained by multiplying the corrugation height by a factor of ap-
proximately two.
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Abstract

A method for extracting the eigenvalues and eigenmodes from
complex coupled fluid-structure interaction (FSI) systems is
presented. The FSI system under consideration in this case is
a one-sided, inviscid flow over a finite-length compliant surface
with complex boundary conditions, although the method could
be applied to any FSI system. The flow is solved for the invis-
cid case using a boundary-element method solution of Laplace’s
equation, while the finite compliant surface is solved through
a finite-difference solution of the one-dimensional beam equa-
tion. The crux of the method lies in reducing the coupled fluid
and structural equations down to a set of coupled linear differ-
ential equations. Standard Krylov subspace projection methods
may then be used to determine the eigenvalues of the large sys-
tem of linear equations. This method is applied to the analysis
of hydroelastic FSI systems with complex boundary conditions
that would be difficult or otherwise impossible to analyse us-
ing standard Galerkin methods. Specifically, the complex cases
of inhomogeneous and discontinuous compliant wall properties
and arbitrary hinge-joint conditions along the compliant surface
are considered.

Introduction

Numerical methods are used to investigate the stability of a
finite-length compliant wall interacting with an incompressible,
high-Reynolds number, boundary layer flow over one side. In
the limit of infinite Reynolds number, the flow may be mod-
elled using an inviscid approximation. A schematic of the fluid-
structure system is presented in Figure 1. The compliant wall
is composed of a simple elastic plate that may have an added
spring foundation and structural damping.

Mean−flow U
∞

Perturbed flow profile

Downstream/exit
flow profile

Upstream/approaching
flow profile

Rigid wall
upstream

Rigid wall
downstream

Compliant wall section

Figure 1: Schematic of the flow-structure system studied; the
spring and dashpot foundations are absent for an unsupported
elastic plate.

The problem of a one-sidedinfinitely-longcompliant wall inter-
acting with an inviscid flow is well documented through theo-
retical studies by Carpenter and Garrad [1].

This paper presents a technique whereby the fluid-structure sys-
tem for a finite wall is represented as a single governing set of
linear equations. Some simple results will be presented that
may be validated against existing results obtained through the-
oretical or Galerkin methods. Finally, the new method will be

used to perform an illustrative investigation into the complex
wall behaviour with more complex inhomogeneous conditions
and multiple hinged boundary conditions imposed.

System equations

The linear motion of the compliant wall is governed by the two-
dimensional beam equation. Extra terms are added to account
for the addition of homogeneous backing springs (Kη) and uni-
form dashpot-type damping (d∂η/∂t) to model the effects of
energy dissipation in the wall structure.

ρmh
∂2η
∂t2 +d

∂η
∂t

+B
∂4η
∂x4 +Kη =−∆p(x,0, t) , (1)

whereη(x, t), ρm, h andB are, respectively, the plate’s deflec-
tion, density, thickness and flexural rigidity, whilep(x,y, t) is
the unsteady fluid pressure. In the present problem we apply
hinged-edge conditions at the leading and trailing edges of the
plate although in the method that follows there is no necessary
restriction on such boundary conditions.

The fluid is modelled using the assumptions of incompress-
ible and irrotational flow. This is an appropriate approximation
for the high Reynolds number flow outside the boundary layer,
however rotationality and viscous effects of the boundary layer
are ignored. This therefore implies the approximation that the
boundary layer is thin with respect to the wall disturbance wave-
length and amplitude. A velocity perturbation potentialφ(x,y, t)
which satisfies Laplace’s equation is introduced and the solution
of which is then used in the linearised unsteady Bernoulli equa-
tion,

∆p =−ρ
∂φ
∂t
−ρU∞

∂φ
∂x

, (2)

whereρ andU∞ are, respectively, the fluid density and flow
speed. The plate and fluid motions are coupled through the
boundary condition of zero normal velocity at the wall and a
balance of unsteady pressure forces.

Eigenvalue Determination

A Single Governing Equation for the System

Where Lucey and Carpenter [2] used an explicit time-marching
scheme for the solution of the wall position, the objective here is
to avoid temporal discretisation by direct solution of a single set
of ordinary differential equations. The compliant wall position,
η(x, t), will be the single resulting variable.

Due to the linearity of Laplace’s equation, the boundary element
solution for the fluid equation may be expressed as the sum of a
mean flow plus a distribution of singularities along the deform-
ing compliant wall. In this case, zero order linear source(-sink)
elements are chosen for the singularities, with the strength of
each element denotedσ(x). With the discretisation of the com-
pliant surface intoN elements, each with constant strengthσi ,
the vector of element strengths may be determined through a

565


