
16th Australasian Fluid Mechanics Conference
Crown Plaza, Gold Coast, Australia
2-7 December 2007

Algebraic Reconstruction Techniques for Tomographic Particle Image Velocimetry

C. H. Atkinson and J. Soria

Laboratory for Turbulence Research in Aerospace and Combustion
Department of Mechanical Engineering

Monash University, Victoria, 3800 AUSTRALIA

Abstract

Tomographic particle image velocimetry (Tomo-PIV) is a tech-
nique for three-component three-dimensional (3C-3D) veloc-
ity measurement based on the tomographic reconstruction of
a volume intensity field from multiple two-dimensional projec-
tion. As such the performance and accuracy of this technique is
highly dependant on the algorithm used for reconstruction. This
paper presents an evaluation of four different tomographic re-
construction algorithms, namely multiplicative algebraic recon-
struction techinique (MART); adaptive algebraic reconstruction
technique (AART); improved iterative algorithm for sparse ob-
ject reconstruction (IIASOR); and simultaneous iterative recon-
struction technique (SIRT). Results indicate that the MART and
AART algorithms provide considerably better particle field re-
constructions for fewer iterations.

Introduction

Tomographic particle image velocimetry (Tomo-PIV) (4) is a
recently introduced tool for three-component three-dimensional
(3C-3D) velocity field measurements and has the potential to
play an important role in the understanding of the complex 3D
topology of turbulent flows. The technique is based on the
tomographic reconstruction of instantaneous volumetric parti-
cle field intensity distributions from multiple simultaneous two-
dimensional (2D) projections or views of the measurement vol-
ume. Reconstructed 3D intensity fields can then be three-
dimensionally cross-correlated in 3D to determine the 3D par-
ticle displacements based on the same principles as standard
planar PIV.

The reconstruction of an image or field from multiple projec-
tions dates back to Radon (12). The earliest applications ap-
peared in the 1950s where radio astronomers used strip projec-
tions to reconstruct the distribution of radio emissions across
celestial bodies (3), and was quickly adopted for medical di-
agnostics (11) in the form of computed axial tomography or
CAT scans. The popularity of tomography stems from its non-
intrusive nature and its use of standard two-dimensional mea-
surement instruments. The widespread use of tomography in
medical diagnostics, radio astronomy and geophysics has lead
to the development of numerous reconstruction techniques that
are optimised for various applications.

The application to transient fields such as fluid flows and heat
transfer, represent a special case of reconstruction problems,
owing to the need for the simultaneous recording of each pro-
jection. View angle limitations also become apparent in practi-
cal investigations where optical access to wind or water tunnels
is often limited. For Tomo-PIV the reconstruction must also be
able to resolve the multiple high intensity sources created by the
scattering from numerous particles, while maintaining a low in-
tensity background. This requirement is important for accurate
cross-correlation based velocity extraction and is a departure
from many medical applications, which tend to focus on the re-
construction of only one or two objects at a time. The process-
ing time required for the reconstruction of the multiple large 3D

data sets needed to study turbulent statistics also requires highly
efficient reconstruction algorithms, especially if Tomo-PIV is to
become a standard laboratory tool. The algebraic family of re-
construction techniques appear particular suited to view-limited
tomography, however the reconstruction quality can still vary
greatly depending on the specific technique, relaxation parame-
ters, number of iterations and projection quality.

This paper presents a comparison of different algebraic recon-
struction algorithms towards the robust application of Tomo-
PIV. The algorithms examined include the multiplicative alge-
braic reconstruction technique (MART) (6); adaptive algebraic
reconstruction technique (AART) (10); improved iterative al-
gorithm for sparse object reconstruction (IIASOR) (9); and si-
multaneous iterative reconstruction technique (SIRT) (6). Sim-
ulated data sets are used to compare of each reconstruction with
a known particle field and thereby enable quantification of the
reconstruction quality.
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1.  Tomographic PIV 

1.1.  Background 

 

Tomography is a general technique that involves reconstruction of an image from multiple 

projections. Two-dimensional reconstructions date back to Radon [1], the primary interest to engineers 

being the reconstruction of a three-dimensional field from its two-dimensional projections. The 

earliest applications appeared in the 1950s where radio astronomers used strip projections to 

reconstruct the distribution of radio emissions across celestial bodies [2], with the first medial 

applications soon to follow [3]. Today such techniques are used in numerous applications; from 

medical imaging computed axial tomography (CAT) scans to fluid flows. The popularity of 

tomography stems from its non-intrusive nature and its use of standard two-dimensional measurement 

instruments. The application to transient fields such as fluid flow and heat transfer, represent a special 

case of reconstruction problems, owing to the need for simultaneous measurements in multiple 

directions. View angle limitations also become apparent in practical investigations due to the presence 

of test section walls, rail mounting and in some cases the presence of test models.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of multi-camera algebraic reconstruction technique. Filled voxels represent particle 

locations required to satisfy the filled pixels in each CCD recorded projection.    
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Figure 1: Schematic of multi-camera algebraic reconstruction
technique. Filled voxels represent particle locations required to
satisfy the filled pixels in each CCD recorded projection.

Tomographic Reconstruction

In Tomo-PIV multiple CCD arrays are used to record projec-
tions of a common laser illuminated particle seeded fluid vol-
ume. The intensity recorded at each detector or pixel Pi on the
CCD array, represents the integration of intensity through the il-
luminated volume along the pixel’s line-of-sight si. A schematic
of this is shown in figure 1. This can be expressed as:

Pi =
Z

∞

−∞

I (x,y,z)dsi (1)

where I(x,y,z) represents the unknown intensity source func-
tion. The goal of tomography is to invert the highly under deter-
mined integral equation from each projection to determine and
hence reconstruct the intensity distribution within the volume.

Reconstruction techniques commonly reside in either the
Fourier or spatial domain. Fourier techniques involving con-
volution are highly efficient and commonly used in medical di-
agnostics, yet in most cases require numerous equally spaced
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projections that are unlikely to be realised in most fluid flow ap-
plications. A group of techniques that are better suited to lim-
ited view reconstruction are the algebraic reconstruction meth-
ods. These require the intensity volume be divided into a 3D
grid of voxel elements as shown in figure 1. The integral along
each pixel’s line-of-sight can then be expressed in terms of a
weighting matrix Wi j, which represent the contribution of each
voxel’s intensity to that recorded by each pixel:

Pi = ∑
j

Wi jI j (2)

where I j is a vector representing the intensity of each voxel. The
contribution of each voxel to each pixel can be determined using
relative volume intersection of a cylinder and a sphere (7) rep-
resenting the pixel’s line-of-sight and voxel, respectively. The
intensity value in each voxel is then iteratively corrected such
that the calculated projections of each voxel Pi approach the
recorded intensity at each pixel. This iterative correction forms
the basis of the algebraic reconstruction techniques, however
the nature and implementation of this correction can vary sig-
nificant and subsequently effect the convergence and quality of
the reconstruction.

Algebraic Reconstruction Algorithms

Four different iterative techniques and presented below, each
being chosen for their ability to handle limited projections.

Multiplicative algebraic reconstruction technique (MART)

The MART technique (5) involves a multiplicative correction
to the voxel intensity based on the ratio of the recorded pixel
intensity Pi and the projection of voxel intensities ∑ j Wi jIk

j from
the previous iteration k:

Ik+1
j = Ik

j

(
Pi

∑ j Wi jIk
j

)µWi j

(3)

where µ is a relaxation parameter typically chosen between 0
and 2. Each voxel’s intensity is corrected to satisfy one projec-
tion or pixel at a time, with a single iteration being completed
only after every projection has been considered. This method
has been proven to converge to the maximum information based
entropy solution (8), which represents the most probable recon-
struction based on the recorded projections. Elsinga et al. (4)
indicate that this algorithm was preferable to that of additive al-
gebraic reconstruction technique (ART), which was shown to
leave artefacts or tracer in the reconstructed field.

Improved iterative algorithm for sparse objects (IIASOR)

Li et al. (9) introduced an algorithm referred to as the improved
iterative algorithm for sparse object reconstrution, which at-
tempts to select the sparse solution from the multiple intensity
fields that can satisfy the recorded projections. The solution
method is based on Lagrange duality, which involves perform-
ing the following iteration for each projection in each iteration
to solve for the dual variable ω j:

ω
k+1
j = ω

k
j +β

Pi−∑ j Wi jg1

(
ωk

j

)
MIN

(
∑ j W 2

i jg2
(
ωk

l
)
,γ
)Wi j (4)

g1 (t) =
{

t−1
ε

t ≥ 1
0 t < 1

(5)

g2 (t) =
{

1
ε

t ≥ 1
0 t < 1

(6)

where β is a relaxation parameter, ε is small positive number
used to perturb the solution, and MIN(a,b) returns the mini-
mum of a and b or in this case prevents the denominator from
becoming smaller than the small positive constant γ. Equation
4 converges quickly but can become unstable, prompting the
switch to the following equation to solve ω j if instability of the
solution is observed:

ω
k+1
j = ω

k
j +

Pi−∑ j Wi jg1

(
ωk

j

)
1
ε ∑ j W 2

i j
Wi j (7)

The initial values of ω j are given by:

ω
0
j = ∑

i
Wi jPi (8)

The intensity in each voxel I j can then be determined from the
values of ω j:

Ik
j = g1

(
ω

k
j

)
(9)

Adaptive algebraic reconstruction technique (AART)

This technique is an extension to the additive ART algorithm
that involves the adaptive adjustment of relaxation parameters
during each stage of the reconstruction (10). In the basic addi-
tive ART algorithm the each voxels intensity is updated for each
projection in each iteration as follows:

Ik+1
j = Ik

j −λ
i,k+1
j

(
∑

j
Wi jIk

j −Pi

)
(10)

where λ
i,k+1
j represents the relaxation parameter for each voxel

for a given projection i and interation k. In standard ART this
relation parameter is either a constant or at least the same for
each voxel in a given iteration. In AART this relaxation param-
eter is instead adjusted for each voxel so that as each projections
is considered, the voxels that have a larger intensity contribution
to the ith projection receive the largest correction. This is done
via the ratio of the intensity contribution of each voxel yk

j to the
integration of this intensity contribution along the projection’s
lines-of-sight ∑ j Wi jyk

j , where:

yk
j = Ik

jWi j (11)

and the relaxation parameter becomes:

λ
i,k+1
j =

yk
j

∑ j Wi jyk
j

(12)

Simultaneous iterative reconstruction technique (SIRT)

Simultaneous algorithms such as SIRT target a least squares so-
lution to the line-of-sight integral equation, enabling simultane-
ous consideration of every projection in each iteration. The aim
of such an algorithm is to remove the sensitive of the reconstruc-
tion to error in each projection (6), requiring I j to simultaneous
satisfy all projections. The SIRT iteration (2) is shown below:

Ik+1
j = Ik

j +λ
k ∑i

[
Wi j
(
Pi−∑h WihIk

h
)
/∑h Wih

]
∑i Wi j

(13)

λ
k = α+

β

k
(14)

In this case we have incremented the relaxation parameter as
suggested by Bangliang et al. (1), which reduces the correction
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in subsequent iterations as the solution is approached. Initial
values for I0

j are obtained in the same manner as equation 8:

I0
j = ∑

i
Wi jPi (15)

Implementation of the Weighting Matrix

The weighting matrix Wi j used in each of the considered alge-
braic reconstruction techniques represents the contribution of
each voxel to each pixel, with dimension m× n where m is
the number of pixel and n is the number of voxels. A typical
1280×1024 pixel camera with a volume of 1000×1000×200
voxel grid will therefore require a matrix of 2.6×1014 elements
for each camera. This matrix is only a factor of the camera ori-
entation and measurement volume configuration and can there-
fore be calculated once and reused for each set of recorded pro-
jections, reducing reconstruction time. Unfortunately for a typ-
ical four camera Tomo-PIV setup this will require four matrices
of 2.6×1014 elements, corresponding to a file-sizes of approx-
imately 520 terra-bytes each.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Pixel line-of-sight schematic for a subgrid weighting matix. 

 

 

 

 

 

 

 

Figure 6 Comparison of cube and rectangular prism intersection with sphere and cylinder intersection. 

 

Once the weighting matrix has been established, projections of the particle refractions may be 

taken and an algebraic reconstruction performed. The quality of this reconstruction is highly 

dependent on the number of projections and the calibration accuracy, as already mentioned, but also 

on the particle density. As the number of particles increases so does the number of illuminated pixels, 

and with it the possible line-of-sight intersections as shown in figure 7. For standard cross-correlation 

two-dimensional PIV, Keane and Adrian [11] recommend particle image densities of 10-20 particles 

per interrogation region. Scarano et al. [8] managed to achieve a tomographic reconstruction of 
4

1010.5
!

" particles/voxel, based on 0.05 particles/pixel in each projection. For a 32!32!32 pixel 

interrogation region this appears to result in an acceptable 16 particles per region, however Scarano et 

al. [8] indicated that a significant number of unpaired particles were observed, suggesting that the 

effective number of particle pairs in each window may have been considerably lower. 

 

 

 

 

   

 

 

 

Figure 7 Schematic of increased possible particle solutions as the number of particles is increased. Real 

particle

! 

(•) , ghost particle   
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(o) . 

 

Another major source of reconstruction error is noise in the image recordings. This increases the 

number of possible line-of-sight intersections (see figure 7), increasing the number of possible 
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Figure 2: Pixel line-of-sight schematic for a sub-grid weighting
matrix.

Each pixel is likely to see only a small portion of the total num-
ber of voxels, meaning that the weighting matrix will be very
sparse. This lead us to divide the matrix is a series of sub-grids
along the viewing direction as shown in figure 2. These sub-
grids are sized based on greatest area seen by a pixel in each
plane, meaning that if a pixel sees at most a voxel grid of vw
voxels in each plane then the weighting matrix for each camera
can be presented by m×nw×nz where nz is the number of vox-
els in the line-of-sight direction. For the setup discussed above
this would reduce the number of elements to 2.4×109 per cam-
era. The integration along the line-of-sight of a given pixel Pi
can then be calculated as:

Pi = ∑
nz

∑
vw

Wi jI j (16)

A transposed form of the weighting matrix can similarly be
formed by considering a pixel sub-grid of pw pixels on the CCD
array for each pixel, enabling the initial solution I0

j given in
equations 8 and 15 to be calculated as:

I0
j = ∑

pw
Wi jPi (17)

requiring a matrix of n× pw elements.

Unfortunately SIRT did not lends itself as well to this approach,
resulting in considerable longer calculation times as discussed
later.

Reconstruction Artefacts and Ghost Particles

One common problem that arises in reconstruction of a particle
field is the presence of non-zero intensity regions that do not
corresponded to actual particle locations (4). Without having

prior knowledge of the true particle location it is not possible
to distinguish these regions from true particles, hence the term
ghost particles is used. These ghost particles or reconstruction
noise originate from there being multiple voxel intensity distri-
butions that are capable of satisfying the camera observed pro-
jections (see figure 3). Naturally as more projections are added
the number of possible intensity distribution should be reduced,
along with the number of ghost particles.

Figure 3: Schematic of particle location ambiguity with multi-
ple possible particle solutions when only 2 projection view an-
gles are taken. Real particle •; ghost particle ◦.

Figure 4 illustrates that as the number of particles increases so
to will the number of non-zero projections, which will results
in an increase in the possible line-of-sight intersections. The
consequence of this is that a greater number of intensity distri-
bution will now satisfy the recorded projection and more ghost
particle will be created.

Reconstruction Simulations Method

In order to assess the application of the previously discussed
algorithms to the limited-view particle field reconstruction of
Tomo-PIV, particle locations and corresponding projections
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Figure 4: Schematic of increased possible particle solutions as
the number of particles is increased. Real particle •; ghost par-
ticle ◦.

were simulated. The simulations were carried out under the
same condition used by (4), namely a 1000× 200 voxel plane
with three cameras viewing linear projections along the minor
dimension of the interrogation region with a 20 deg angular in-
terval between each camera, similar to that shown in figure 1.
The projection simulated for each camera consisted of a single
row of 1008 pixels. 50 spherical particles with Gaussian iten-
sity distributions with a peak intensity of 4096 were randomly
located with a diameter of 3 voxels.

Reconstructions were then undertaken using each of the algo-
rithms with initial intensity distributions and relaxations param-
eters as in table 1. The CPU processing time for each algorithm,
including the time taken to load each weighting matrix and im-
age, was recorded for reconstruction on a two 2.6 GHz dual-
core AMD Opteron processors system with 16 GB RAM.

The overall reconstruction quality was evaluated by determining
a correlation coefficient Q between the reconstructed intensity
field Irec, j and the intensity fields consisting of only the Gaus-

MART IIASOR AART SIRT
I0

j = 1 ω0
j = ∑i Wi jPi I0

j = 1 I0
j = ∑i Wi jPi

µ = 1 MIN = 20 β = 1 α = 1.5
β = 1 β = 2.0
ε = 0.2

Table 1: Algorithm initial intensity distribution and relaxation
parameters

sian spheres Igaus, j:

Q =
∑ j Irec, jIgaus, j√
∑ j I2

rec, j ∑ j I2
gaus, j

(18)

which includes variating in particle intensity, location and the
presence of ghost particles.

The relative number of ghost to true particles was determined
using a region merging technique. This involved grouping inter-
connected voxels of non-zero reconstructed intensity into mul-
tiple regions, corresponding to particles. These reconstructed
regions were then compared against common region locations
in the Gaussian sphere intensity field to determine if each region
represented a true or ghost particle.

Reconstruction Results

An example of the reconstruction after five iterations can be
seen figure 5 for each algorithm. In the case of the MART and
AART algorithms a high quality reconstruction can be seen af-
ter only a small number of iterations. The same can not however
be said for the IIASOR and SIRT algorithm. In the case of the
IIASOR algorithm the solution shows a large number of small
intensity regions with little indication of the original particles.
SIRT on the other-hand behaves in a manner similar to that re-
ported by Elsinga et al. (4) when the additive ART algorithm
was used, showing the establishment of a series of tracers along
the line-of-sight of each non-zero projection.

Figure 6 shows the extension to fifteen iterations of the same
particle field. These results indicate only a slight improvement
for both the MART and AART algorithm. Further progess has
been made by both the IIASOR and SIRT algorithms, however
each were found to require approximately 50 iteration before a
solution of similar quality of the five iterations of MART and
AART was achieved.

Plots of the reconstruction coefficient, percentage of ghost parti-
cles and CPU process time against the number of iterations are
presented in figure 7. Results show that for a limited number
of iterations a considerably higher reconstruction coefficient is
obtained by both the MART and AART algorithms. These al-
gorithms also produce a much lower number of ghost particles,
however this remaind on the order of 50%. A comparison of
the processing times indicate a slightly faster reconstruction for
the AART algorithm, with an apparent slowing of the MART
algorithm. This disparity may become more noticeable as the
number of voxels is increased.

As mentioned previously the use of a sub-grid based weighting
matrix did not lend itself to efficient implementation of the SIRT
algorithm, owing to the continuous summing along each row of
the weighting matrix. This resulted in the SIRT algorithm tak-
ing over 30 CPU seconds for a single iteration. For this reasons
SIRT has been excluded from figure 7c. It should be stated that
if some of these summations were to be performed off-line it
should be possible to considerably improve the efficiency of the
SIRT algorithm. The significantly larger number of iterations
required by this algorithm in comparision to MART and AART
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(a)

(b)

(c)

(d)

(e)

Figure 5: Reconstruction of simulated projections from 3 cameras at an angular interval of 20 deg for 50 particles in a 1000×200 voxel
plane, after five iterations. (a) Original Gaussian particles; (b) MART; (c) IIASOR; (d) AART; (e) SIRT.
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(a)

(b)

(c)

(d)

(e)

Figure 6: Reconstruction of simulated projections from 3 cameras at an angular interval of 20 deg for 50 particles in a 1000×200 voxel
plane, after fifteen iterations. (a) Original Gaussian particles; (b) MART; (c) IIASOR; (d) AART; (e) SIRT.

196



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

Q

Iterations

MART
IIASOR

AART
SIRT

(a)

 40

 50

 60

 70

 80

 90

 100

 110

 0  5  10  15  20

gh
os

t p
ar

tic
le

s 
(%

)

Iterations

MART
IIASOR

AART
SIRT

(b)

 0

 5

 10

 15

 20

 0  5  10  15  20

CP
U 

tim
e 

(s
)

Iterations

MART
IIASOR

AART

(c)

Figure 7: Reconstruction quality for different numbers of iter-
ations of simulated projections from 3 cameras at an angular
interval of 20 deg for 50 particles in a 1000×200 voxel plane.
(a) Correlation coefficient; (b) percentage of ghost particles; (c)
CPU processing time.
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Figure 8: Probability density function of true and ghost parti-
cles. (a) MAART; (b) AART.

meant that further optimisation of the SIRT algorithm was not
performed in this paper.

A comparison of the probability density fuction (PDF) for the
intensity of true and ghost particles generated by both the
MART and AART algorithms can be seen in figure 8. While
both algorithms were shown to produce ghost particle on the
order of 50% it is clear that most of these particles are of much
lower intensity than the true reconstructed particles. It should
therefore be possible to remove many of these ghost particle by
careful thresh-holding of the reconstructed intensity field.

Conclusions

A series of iterative algebraic reconstructed algorithms are
specifically tested for their applicability to Tomo-PIV particle
field reconstruction. Results indicate that the MART and AART
algorithms provides higher quality reconstruction for fewer iter-
ations and less processing time than either the IIASOR or SIRT
techniques. An efficient means of implementing the weighting
matrix is also discussed.
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