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Abstract

This paper describes a new vortex blob method for the
solution of problems in 2D vortex dynamics. In contrast
to traditional vortex blob methods, this approach incor-
porates the distortion of the blobs, by the solution of two
additional ODEs for each vortex blob, giving the evolu-
tion of the aspect ratio and orientation for an equivalent
elliptical patch of constant vorticity in response to the
locally linearised, but time-dependent, strain and vortic-
ity fields. When the aspect ratio of the equivalent el-
lipse reaches a pre-determined limit, the circular vortex
blob is split in two, with the centres of the new blobs
aligned along the principal axis of the ellipse, thus pro-
viding a consistent approach to vortex blob insertion, so
that fine-scale features such as vortex filamentation can
be followed in an efficient way.

Introduction

Lagrangian methods have a fundamental advantage over
Eulerian or grid-based methods for problems in 2D vor-
tex dynamics, in that the calculations are carried out
only where the flow velocities are non-zero. This is par-
ticularly so for cases where there are strongly nonlin-
ear interactions, giving rise to small-scale, but localised
structures. Thus a vortex patch in a strain field (due to
the presence of other vortices nearby e.g.) may deform
and eventually produce filaments of vorticity. As time
progresses, these filaments may quickly become very long
and thin, and are advected by the local velocity field, giv-
ing rise to long sinuous streaks of vorticity. For inviscid,
or near-inviscid flow, the cross-filamentary scales may be
extremely small. Resolving such features is extremely
difficult with uniform grids, and even with non-uniform
grids there is the requirement of changing the grid very
quickly in time as the flow evolves. In response to this,
vorticity contour following methods have been developed,
starting with the contour dynamics technique of Zabusky
et al [13], and evolving to hybrid methods such as the
Contour Advective Semi-Lagrangian (CASL) method of
Dritschel and Ambaum [4], where the stream-function
is inverted on a relatively coarse grid, but the vorticity
contours (represented by nodes) are advected using La-
grangian techniques by interpolating the velocity field on
to the contour nodes at each time-step. Because of the
fact that vorticity contours very quickly lengthen as fil-
amentation takes place, these methods must continously
insert new nodes along the vorticity contours, and this
growth in the number of nodes can quickly limit the use-
fulness of such approaches. Accordingly, the techniques
of ‘contour surgery’ [3] have been developed, where con-
tours of vorticity are broken when they become very thin,
and equal-valued contours merged when they approach
closely.

An alternative Lagrangian approach for such problems is
to represent the initial vorticity distribution with point-
vortices (each has a δ−distribution of vorticity) and then

to determine the motion of each point-vortex in response
to all other vortices, so giving the evolution of the vortic-
ity field. This technique was first introduced by Rosen-
head [9], in his study of the evolution of a vortex sheet.
Difficulties encountered with random motions of such
point-vortices are to some extent mitigated by desingu-
larising in some way, i.e. replacing the δ−distribution
of vorticity with some smeared non-infinite distribution
with a characteristic small scale, the so-called vortex blob
approach of Chorin and Bernard [2]. These vortex blobs
methods all introduce some numerical dissipation, but
are generally accepted as being superior to point-vortex
techniques, and we focus on such methods here. In order
to resolve fine-scale vorticity features, the vortex blob
methods require techniques of artificial blob insertion,
that play a role equivalent to the node insertion on con-
tours for contour dynamics techniques. When a single
blob is replaced by two others, say, then each of the new
blobs will have half the circulation of the old blob. It is
clear that any initially circularly symmetric blob should
actually distort in response to the local velocity shear.
To account for this, Rossi [11] introduced Gaussian ellip-
tical blobs, and determined ODEs for their evolution, to
be solved simultaneously with the ODEs describing the
motion of the centroids of the blobs. Typically, the as-
pect ratio of an elliptical blob increases with time, until
eventually it must be replaced by a number of elliptical
blobs of smaller circulation. The equations for this are
non-trivial, however, and in the present work we develop
a similar, but simpler scheme. We use fixed size blobs (i.e.
no account is taken of viscosity) but for each blob simul-
taneously follow an equivalent constant vorticity patch
of constant area in response to the first order approxi-
mation to the local strain and vorticity fields. The two
ODEs describing the evolution of the orientation and as-
pect ratio of the elliptical patch have been obtained by
Kida [6], who showed that such a patch remains elliptical
for all time. When the aspect ratio reaches some pre-
determined quantity, we can replace our initial blob with
two blobs, each with half the circulation, aligned along
the principal axis of the equivalent patch, thus providing
a robust and simple technique for introducing blobs in a
way consistent with the evolution of the flow-field. Even-
tually the growth in the number of blobs can be limited
by discarding blobs after some suitable number of split-
tings: again, this introduces numerical dissipation, but
this is quantifiable and can be chosen to be consistent
with the computational resources available. Note that in
general, although not employed here, blob merger should
also be allowed, but as our blobs are circular, standard
techniques can be used (see Rossi [11]).

This paper reviews the basic equations for the vortex blob
approach and then goes on to show how to incorporate
the Kida solution for the equivalent elliptical patches.
Some preliminary results are provided, and suggestions
made for future work.



Mathematical Formulation

Governing Equations

We consider 2-D incompressible, inviscid flow in an un-
bounded domain, with the flow field governed by the Eu-
ler equation

∂u

∂t
+ u · ∇u = 0 , (1)

where u = (u, v) is the fluid velocity and we use rect-
angular cartesian coordinates (x, y). The corresponding
vorticity is thus a scalar, satisfying

Dω

Dt
=
∂ω

∂t
+ u · ∇ω = 0 (2)

and it is convenient to introduce a stream-function ψ with

∇2ψ = ω. (3)

Then (u, v) = (−ψy, ψx). We define the circulation Γ,
associated with any distribution of vorticity ω(x, y) over
a region R by

Γ =

ZZ

R

ω(x, y) dxdy . (4)

The 2-D Green’s function for Laplace’s equation is

G(x,x′) =
1

2π
log |x − x

′|. (5)

Therefore, by Green’s second identity on our unbounded
domain

ψ(x) =

ZZ

∇2ψ(x′)G(x,x′) dx′dy′

=
1

2π

ZZ

ω(x′, y′) log |x − x
′| dx′dy′ (6)

and hence the fundamental equations for the time evolu-
tion of the velocity components are

dx

dt
≡ u = −

∂ψ

∂y
= −

ZZ

ω(x′, y′)
∂G(x − x

′)

∂y
dx′dy′

=
1

2π

ZZ

ω(x′, y′)
(y′ − y)

(x− x′)2 + (y − y′)2
dx′dy′

(7)

and similarly

dy

dt
≡ v =

1

2π

ZZ

ω(x′, y′)
(x− x′)

(x− x′)2 + (y − y′)2
dx′dy′ .

(8)

All Lagrangian methods solve equation (1) by determin-
ing u and v at time t in some way, e.g. from expressions
like equations (7) and (8) (point-vortex [9] and vortex-
blob [2] methods), by evaluating a line integral over the
Green’s function (contour dynamics [13] methods) or by
inverting equation (3) numerically to find a stream func-
tion (the CASL method [4]; [8]). This velocity field is
then used to advect the vorticity out to the next timestep.

Point-Vortex and Vortex Blob Methods

Consider the evolution of a patch of vorticity, non-zero
on some region D. If we represent this as

ω(x) =

N
X

j=1

Γjδ(x− xj) (9)

then we have the so-called point-vortex method. Here
we represent ω(x) by the linear superposition of N point
vortices, located at positions xj , j = 1, . . . , N and with
associated circulation

Γj =

ZZ

Γjδ(x− xj)dx . (10)

Substitution of equation (9) in equations (7) and (8) gives
explicit expressions for dx/dt and dy/dt for each of the
point vortices and then setting x = xi gives the veloc-
ity with which point vortex i is advected by the flow
field corresponding to all the other vortices. Use of a
standard ODE solving routine (4th-order Runge-Kutta
is used here) provides an algorithm for the evolution of
the original patch of vorticity. This is the method first
used by Rosenhead [9].

There are two fundamental issues/difficulties associated
with the point-vortex method. One is the degree to which
a general distribution of vorticity can be accurately rep-
resented by the point vortices. This can be addressed
by using more vortices, but of course that increases the
cost of the calculation. Perhaps more significantly, the
interaction of four or more vortices gives rise to intrinsi-
cally chaotic motions [1], so that in general the long-time
behaviour of such models tends to be unreliable.

One way to deal with these problems is to ‘desingularise’
the point vortices, leading to so-called vortex blobs. This
idea goes back to Chorin and Bernard [2], but the explicit
model we use here is due to Krasny [7] (his δ−equation
method):

ω(x) =
1

π

N
X

j=1

Γj

δ2

((x− xj)2 + (y − yj)2 + δ2)2
. (11)

There is no longer a singularity at x = x
′ but the

δ−function representation is regained in the limit when
δ → 0. Here δ, where ω has dropped to one quarter of
its maximum (central) value, can be thought of as the
radius of the blob. The smearing of the point vortex
introduced in this way acts to reduce the tendency to
chaotic motion, essentially because there is an effective
dissipation introduced. Even with this desingularisation,
however, there is a tendency for individual vortex blobs
to move chaotically, particularly in cases where filamen-
tation takes place and the separation between blobs be-
comes large. This problem can be overcome to some ex-
tent by splitting blobs, or by introducing new blobs and
renormalising the circulation.

Blob-Splitting Determined by the Local Strain Field

The contribution of the present work is a method that
allows vortex blob insertion in a dynamically consistent
fashion. The approach is motivated by the work of Rossi
([11], [12]), who introduced the idea of using elliptical
Gaussian basis functions (or blobs) that deform according
to the prevailing velocity field. Once the blobs become
significantly elongated, they can be split and replaced
by a number of smaller elliptical blobs. In addition, dif-
fusive spreading due to viscosity (not treated here) can
be included. However, the equations describing the de-
formation of the elliptical blobs are non-trivial, so that
there is an associated increase in computational load. On
the other hand, this is more than compensated for by the
increased spatial accuracy.

The simpler idea invoked here is to work with non-
deforming circular blobs, but to keep track of their po-



tential deformation under the prevailing strain field due
to all the other blobs. To implement this, it is necessary
to integrate two ODEs for each blob. These ODEs deter-
mine the axis-ratio (p) and orientation (θ) as a function
of time for the corresponding ‘equivalent elliptical patch’
of uniform vorticity, initially circular with radius δ and
with the same circulation, in response to the local lineari-
sation of the velocity field induced by all the other vortex
blobs. This is possible because exact ODEs for this prob-
lem have been determined by Kida [6] for this situation.
Two new blobs, with half the circulation, and with cen-
tres separated by distance 2δ and aligned along the major
axis of the ellipse equivalent to the vortex blob, are used
to replace a vortex blob when the effective aspect ratio
for a blob pi exceeds the critical value pcrit. In this way
we can resolve fine-scale features of the flow, such as fil-
amentation, by introducing new blobs as required by the
local nature of the velocity field. As this procedure will
eventually lead to an exponential growth in the number
of blobs, some way of limiting the growth is required.
The natural technique is to discard blobs after a certain
number of splittings (say 9 or 10) when their individ-
ual contribution to the circulation is reduced to 1/512 or
1/1024 respectively of that of an original blob. Note that
although the constant vorticity elliptical patch is not ex-
actly equivalent to the corresponding vortex blob, there
is no additional error introduced, as we are only using
this representation as an aid to deciding when and how
to split the vortex blob.

Implementation of the Kida Solution for Elliptical Patches

For any given vortex blob we expand the external velocity
field due to the other blobs to first order as:

u − uB ≈ Ax =

»

ux uy

vx vy

–

B

x (12)

where uB and all the shear components are evaluated at
the centre of the blob and where the coordinate origin
here is at the centre of the blob. This corresponds to
the external shear field considered by Kida [6], but, of
course, here these quantitities are not fixed in time but
vary as the vorticity field and the corresponding velocity
field evolve.

From continuity ux = −vy and then

»

ux uy

vx −ux

–

=

»

ux 0
0 −ux

–

+
1

2

»

0 (uy + vx)
(uy + vx) 0

–

+
1

2

»

0 −(vx − uy)
(vx − uy) 0

–

=

»

e 0
0 −e

–

+

»

0 β
β 0

–

+

»

0 −γ
γ 0

–

(13)

where γ = (vx − uy)/2 is half the local vorticity, e is the
strain rate and β = (uy +vx)/2. By rotating coordinates
to align with the principal strains (following Kida [6]) we
find

P (u − uB) = Dx̄ + Λx̄ (14)

where

D =

»

eeff 0
0 −eeff

–

and Λ =

»

0 −γ
γ 0

–

, (15)

and the coordinates x̄ are rotated by an angle φ from the
original coordinates x. In fact

D = PAP T (16)

where D is the diagonal matrix of eigenvalues of the ma-
trix A and

P =

»

cosφ − sinφ
sinφ cosφ

–

(17)

with the columns of P the (suitably normalized) or-
thonormal eigenvectors of A. Here the eigenvalues

eeff = ±
p

e2 + β2 = ±

r

u2
x +

“uy + vx

2

”2

. (18)

It turns out that the transformation of velocities implied
by equation (14) can be ignored as the only inputs to the
Kida model are eeff and γ (see below).

The equations for the evolution of the i th elliptical patch
are

ṗi = 2eeffpi cos 2θi

θ̇i = −eeff

„

p2
i + 1

p2
i − 1

«

sin 2θi +
Γi

2π

pi

(pi + 1)2

+ γi , (19)

with pi = ai/bi the ratio of the lengths of the major
and minor semi-axes of the ellipse. These are Kida’s
equations (3.2) and (3.3) with minor changes of nota-
tion. Note that θi is the angle relative to the principal
axes of strain, so the orientation θi,ellipse of the principal
axis of the elliptical patch relative to the original axes is
given by

θi,ellipse = θi + φi (20)

where φi is obtained for each vortex blob from the eigen-
vector corresponding to the eigenvalue ei,eff , i.e.

φi = cos−1

 

βi
p

(ei,eff − ei)2 + β2
i

!

(21)

and clearly all angles are functions of time. Finally we
note that the initial value of θi can be chosen to be zero,
corresponding to an alignment with the local principal
axes of strain, as the blobs are all circular.

A Numerical Example

As a test case we consider the interaction of two circu-
lar patches of uniform unit vorticity (Rankine vortices)
of radius R = 1, with their centres separated by a rel-
atively short distance 3R, so that merger is expected.
Each vortex is represented initally by 7 rings of vortex
blobs and one central blob, all with equal strength and
with ‘radius’ δ = 1/15, so covering the vortex. As each
blob represents an equal area of the patch, there are 8n
blobs in ring n, giving 225 blobs initially for each vortex,
following Hume [5]. A fourth-order variable time-step
Runge-Kutta routine is used (ode45.m in MATLAB),
and ‘re-blobbing’ carried out every 0.5 time units. The
area of blobs in the figures is shown as proportional to the
associated circulation, thus giving a visual representation
of the relative dynamic significance of each blob.

In figure 1 the results at times t = 10, 20 and 30 are given,
with pcrit = 5. Frames (a), (b) and (c) show the blobs,
with area proportional to their associated circulation. In
frames (d), (e) and (f), the corresponding contour plots
of vorticity are given, with the colour bar giving vortic-
ity magnitude. (To smooth the contours of vorticity, we
have used a value of δ = 0.2 when evaluating the vortic-
ity from the blob distribution using equation (11)). Also
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Figure 1: The behaviour at times t = 10, 20 and 30 for the merger of two Rankine vortices, with unit radius and centres
separated by three radii. Panels (a), (b) and (c) show the vortex blobs, colour coded and with areas proportional to
their corresponding circulations, while panels (d), (e) and (f) show the corresponding contour plots of vorticity. In all
cases the corresponding contour dynamics calculation (Dritschel [3]) is shown as a solid black curve.

shown are the contours corresponding to the vorticity
jump from zero to unity in a planar high resolution con-
tour dynamics calculation, with minimal contour surgery
(Dritschel [3]). Very good agreement is achieved, with
the filaments of vorticity well resolved, but at this stage
the vortex blob code is not very efficient.

Conclusions

This paper has provided a novel technique for adjusting
the resolution of vortex blob methods by introducing new
blobs as required, according to the time evolution of an
equivalent elliptical patch for each circular blob, thus re-
solving fine-scale features of the vorticity. Because only
circular blobs are used, it is expected that this technique
can be quantified accurately, and that simple models for
the transfer of enstrophy to high wavenumbers, and its
associated final dissipation at the smallest scales resolved,
may be possible.
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