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Abstract 
Hot wire measurements have been made in a turbulent boundary 
layer subjected to concentrated suction applied through a porous 
wall strip in order to examine the influence of suction on the 
small-scale motion. The suction results show significant 
departure from the no-suction case of the Kolmogorov 
normalised spectra and second-order structure functions for k*1 < 
0.2 and r* > 20, respectively, suggesting that suction induces a 
change in the small-scale motion. This change is a result of the 
weakening of the large-scale structures. The effect is enhanced as 
the suction rate is increased. 

 

Introduction  

The response of the large-scale motion to suction applied through 
a single narrow porous wall strip or slit has received some 
attention in the past [3,9,10,13]. For example, [3] studied the 
effect of concentrated wall suction, applied through a short 
porous wall strip, on a low Reynolds number turbulent boundary 
layer. They showed that, when the suction rate is sufficiently 
high, pseudo-relaminarisation occurs almost immediately 
downstream of the suction strip. Further downstream, transition 
occurs and is followed by a slow return to a fully turbulent state. 
Further, [9,10] showed that both the suction rate, σ (≡ Vwb / 
θoU1, where Vw is the suction velocity, b is the effective width of 
the strip, θo is the momentum thickness of the boundary layer at 
the leading edge of the porous strip with no-suction and U1 is the 
free stream velocity), and the momentum thickness Reynolds 
number, Rθ, played an important role in the relaminarisation 
process. They argued that the ratio Rθo / σ should not exceed a 
(as yet undetermined) critical value, if relaminarisation is to 
occur. Recently, the effect concentrated wall suction can have on 
the anisotropy of the Reynolds stress tensor was examined in 
[11]. Those results indicated that the large-scale motion of the 
boundary layer was significantly altered by suction, and that the 
global anisotropy of the layer increases with the suction rate. For 
example, they found that the shape of the structures near the wall 
changed from a cigar to a pancake-shape when suction is applied. 

The characteristics of the small-scale motion in a smooth wall 
turbulent layer have been examined by several authors [1,2,17]. 
The possibility of local isotropy at various Rθ (=U1θ/ν, where, θ 
and ν are the momentum thickness and kinematic viscosity of the 
fluid respectively) and the Taylor microscale Reynolds number 
Rλ (= (〈u1

2〉)1/2λ/ν, where u1 is the longitudinal velocity 
fluctuation, λ the longitudinal Taylor microscale, ν the viscosity 
of air) has spawned the introduction of various criteria for local 
isotropy [4,6,8,19]. For example, [19] used S/〈(∂u/∂y)2〉1/2 (where, 
S≡∂U/∂y) for characterising the anisotropy of the small-scale 
motion and suggested that this ratio should not depend on the 
Reynolds number in the near-wall region. Using direct numerical 
simulations of a fully developed channel flow, [1] showed that 
the magnitude of Rλ should have little effect on the degree of 
isotropy at sufficiently high wave number provided 
S*(≡S/(〈ε〉/ν)1/2, where 〈ε〉 is the mean turbulent energy 
dissipation rate) is sufficiently small. They argued that the 

Corrsin criterion is too restrictive and may be relaxed to S* ≤ 0.2, 
provided the high wave number vorticity spectra approach 
isotropy. However, the general consensus is that local isotropy is 
best satisfied at high Rθ and Rλ. Since changes in the boundary 
conditions affect Rθ, it would be of interest to determine if and 
how these changes influence the small-scale motion. 

The main objective of the present study is to examine the 
influence of wall suction on the small-scale motion. 
 
Measurement Details 
Measurements were made in a smooth flat plate turbulent 
boundary layer, which is subjected to concentrated suction 
applied through a short porous strip. The turbulent boundary 
layer develops on the floor of the wind tunnel working section 
(figure 1) after it is tripped at the exit from a two-dimensional 
9.5:1 contraction using a 100 mm roughness strip (Norton Bear 
No. 40, very coarse). Tests showed that the boundary layer was 
fully developed at the suction strip location, which is about 1200 
mm downstream of the roughness strip. The roof of the working 
section is adjusted to achieve the desire pressure gradient (zero 
for the present investigation). The free stream velocity U∞ was 
approximately 7 ms–1; corresponding values of the initial 
momentum thickness Reynolds numbers Rθo are 1400 and the 
Taylor microscale Reynolds number is in the range Rλ = 90–120. 
A 3.25 mm thick porous strip with a width of 40 mm and made of 
sintered bronze with pore sizes in the range 40–80 µm or (0.4–
0.9)ν/Uτ was mounted flush with the test section floor. Allowing 
for the width of the mounting recess step, the effective width (=b) 
of the strip was 35 mm. Suction was applied through a plenum 
chamber located underneath the suction strip and connected to a 
suction blower, driven by a controllable DC motor, through a 
circular pipe (internal diameter D = 130 mm and L/D ≈ 38, 
where, L, is the pipe length). The flow rate Qr was estimated 
directly by radially traversing a Pitot tube located near the end of 
the pipe, for various values of the pipe centre-line velocity (Uc). 
A plot of Qr vs Uc, allowed the suction velocity (Vw) to be 
inferred via the continuity equation (Qr = AwVw, where, Aw is the 
cross-sectional area of the porous strip).  
 

 
Figure 1: Schematic arrangement of the working section 
(dimensions in mm). 



 

The suction velocity was assumed to be uniform over the porous 
surface; this assumption seems reasonable if the variation in the 
permeability coefficient of the porous material is ±3%. 
Measurements were made for σ (= Vwb/θoU∞, normalised suction 
rate or severity index, as introduced by [3]) = 0, 0.8, 1.7, 3.3 and 
5.5. The results for σ = 0 provided a reference against which the 
suction data could be appraised. The wall shear stress τw was 
measured with a Preston tube (0.72 mm outer diameter), and a 
static tube located approximately 35 mm above it at the same x 
position. The Preston tube was calibrated in a fully developed 
channel flow using a method similar to that described in [3,14]. 
τw was determined from the relation τw = -h(dp/dx), where h is 
the channel half-width and p is the static pressure. Although the 
calibration of the Preston tube in the channel flow may not ensure 
that τw will be correctly obtained especially if the flow is 
perturbed, the level of agreement with those inferred from the 
mean velocity gradient at the wall was about 5%. Measurements 
of the velocity fluctuations in the streamwise and wall normal 
directions were made with cross wires, each inclined at 45o to the 
flow direction. The etched portion of each wire (Wollaston, Pt-
10% Rh) had a diameter of 2.5 µm, and a length (l) to diameter 
ratio of about 200. The separation (∆) between the inclined wires 
was about 0.6 mm. The ratios l/η and ∆/η for no-suction at y+ = 
15 are about 4.0 and 4.9 respectively. The velocity fluctuation in 
the spanwise direction was also measured by rotating the same 
X-probe through 90o. All hot wires were operated with in-house 
constant temperature anemometers at an overheat ratio of 1.5. 
The analog output signal of the hot wire was low pass filtered 
(the filter cut off frequency was typically between 5kHz and 
8kHz), DC offset and amplified to within ±5 V. 
 
Mean Turbulent Energy Dissipation Rate and Mean 
Strain Rate 

The variation of 〈ε〉δ / Uτ
3 (δ is the boundary layer thickness) 

across the boundary layer is shown in figure 2 as a function of 
y/δ for both the perturbed and unperturbed boundary layers. The 
mean turbulent energy dissipation rate, 〈ε〉, was estimated by 
integrating the dissipation spectrum (e.g., [18]), viz.  
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where φu(k1) is the one-dimensional spectrum of the streamwise 
velocity. Taylor’s hypothesis was used to obtain the one 
component wavenumber k1���� ��������	
�
������	
��������
���
velocity and f is the frequency. Because of the contamination due 
to electronic noise, the high wavenumber part of the spectrum 
was extrapolated by assuming an exponential decay function for 
the data corresponding to k1

5/3φu [7,16]. It should be noted that a 
more reliable estimate of 〈ε〉 would be to measure all the 
 

 
Figure 2: Variation of 〈ε〉δ / Uτ

3 with σ. �, σ = 0; �, 0.8; �, 1.7; 
�, 3.3; �, 5.5; ⎯: Spalart (Rθ = 1410) [15]. 

components of 〈ε〉 with multiple hot-wires. This is not feasible at 
the moment in the current laboratory experiment. The present 
data for σ = 0 fall below the DNS data of [15] at Rθ = 1410 in the 
region y / δ ≤ 0.2 but there is reasonable agreement between the 
present measurement and the DNS data in the outer layer (y / δ > 
0.4). The reason for the discrepancy in the wall region is partly 
due to the inaccuracy of cross-wire measurements and the 
expected departure of 〈ε〉 from its isotropic value. Because of the 
increased anisotropy of the near-wall flow, the uncertainty of 〈ε〉 
was estimated using error analysis to range between 45% and 
19%, over the region 0.05 < y / δ < 0.2 for σ = 0. It is interesting 
to point out that the marginal difference between the present no-
suction data of 〈ε〉 and the DNS in the region y / δ > 0.2 gives 
confidence in the values derived for the Kolmogorov’s variables 
in that region. Thus, the comparison between the suction and no-
suction data should be reliable, at least qualitatively, since the 
measurements were made with the same probe. The 
measurements should provide some insight into the changes that 
occur in the boundary layer. However, the comparison between 
the suction and no-suction data should be interpreted with 
caution. 
Relative to no-suction, there is a considerable reduction in the 
normalised mean turbulent energy dissipation rate when suction 
is applied. This is consistent with the significant reduction 
observed in the production of the mean turbulent kinetic energy 
(not shown). These results suggest a possible alteration in the 
mechanism responsible for the energy transfer within the 
boundary layer, which in turn would affect both large and small-
scale motions. This is not surprising since quasi-streamwise 
vortical structures are the major structural element responsible 
for turbulence production in the near-wall region. A reduction in 
〈ε〉 would imply a weakening of these structures. The effect is 
enhanced as σ is increased. The reduction in 〈ε〉 is reflected in the 
Kolmogorov scales shown in figures 3a and 3b.  
The figures are plotted in this manner to highlight the changes 
that occur in the near-wall region when suction is applied. 
Interestingly, the measured data agree reasonably well with the 
DNS data in the region y+ ≥ 100. η+ varies only slowly nearly up 
to y+ ≤ 100 (y / δ ≈ 0.2).  
While the rate of change of η+ with y+, relative to σ = 0, 
increases as σ increases for y+ ≥� ����� �	��� ��� k

+ is reduced 
significantly. It seems that y+ = 100 represents a transition point, 
above which the rate of change of η+� ��� k

+ is significantly 
increased for a particular σ. It may be concluded from the results 
presented here that, relative to no-suction, the near-wall 
structures of the perturbed boundary layer have been modified, as 
reflected in the changes in the energy dissipation rate and 
therefore the Kolmogorov velocity and length scales. 
The variations with σ of Rλ and the Kolmogorov normalised 
shear S* are shown in figure 4. All distributions of Rλ show 
 

 
Figure 3: Variations of (a) η+; (b) vK

+ with σ. Symbols are as in 
figure 2. 



 

almost the same behaviour. Rλ decreases until a minimum is 
reached, increases again slightly and then decreases towards a 
constant value. The values are lower in the suction case as 
compared with no-suction case in the region y / δ ≥ 0.05. 
Similarly, relative to no-suction, S* increases in the region y / δ < 
0.45 and decreases towards the negative values in the remaining 
part of the boundary layer when suction is applied. 
 

 
Figure 4: Variation of (a) Rλ; (b) S* with σ. Symbols are as in 
figure 2 
 
The significant changes in Rλ and S* when suction is applied 
would suggest that the small-scale motion has been altered, and 
the magnitude of this alteration is increased as σ is increased. For 
example, relative to no-suction, the change in the region y / δ ≤ 
0.2, where Rλ and S*, decreases and increases respectively when 
suction is applied may suggest an increase in the anisotropy of 
the small-scale. While S* is about the same for all σ at y / δ ≈ 
0.43, Rλ changes appreciably with σ. For example at y / δ ≈ 0.43, 
Rλ is 82, 78, 72, 35 and 24 for σ = 0, 0.8, 1.7, 3.3 and 5.5, 
respectively. The result could suggest that the anisotropy of the 
layer is the same at y / δ ≈ 0.43, and beyond this point, the 
anisotropy decreases below that for no-suction. This is evident in 
figure 4b where the suction data cross over below those of no-
suction data at y / δ ≈ 0.43. 
 
Spectra and Second-order Structure Functions 

The distributions of 〈ε〉, Rλ and S* reflect a change in the near-
wall structure when suction is applied. Figures 5 and 6 show the 
Kolmogorov compensated spectra and second-order structure 
functions, respectively, of u, v and w. Although, Rλ (90-120) is 
not large enough for the existence of a discernible inertial range, 
the dependence of k1*

2φ*
u; k1*2φ*

v and k1*
2φ*

w on σ is visible at 
low wavenumbers (k*

1 < 0.2), where the suction data depart from 
the no-suction data at y / δ = 0.125 as shown in figure 5. The 
departure increases as σ increases. There is reasonable collapse 
among all the data sets at larger wavenumbers (k*

1 ≥ 0.2) for the 
u spectra. The quality of the collapsed is poorer for v and w. This 
is not too surprising since the value of 〈ε〉 used to calculate the 

Kolmogorov scales were inferred from the u spectrum. However, 
the collapse should be addressed with some reservation because 
〈ε〉 obtained from 〈ε〉hom ≈ ν〈(∂u/∂x)2〉 + 〈(∂v/∂x)2〉 + 〈(∂w/∂x)2〉 
may provide a better estimate than those used here, and therefore, 
more appropriate. While the attenuations of the spectral at k*

1 < 
0.2 by suction highlights a change in large-scale motion, the 
departure of v spectra further suggests the anisotropy of the 
large-scale resulting from an alteration of the large-scale 
structures. Since coherent structures are present at various scales, 
the departure from no-suction may suggest the weakening of 
these structures. Also, the attenuation of k1*

2φ*
v persists more 

that the other two over a significant fraction of k*
1 at least for σ = 

5.5. Thus, the distributions of k1*
2φ*

v are more affected by 
suction than k1*

2φ*
u and k1*2φ*

w. The results are in agreement 
with [10]. The high-wavenumber variation exhibited among all 
the data set when displayed on a linear scale (not shown) may 
reflect the difference in large-scale anisotropy, since anisotropy 
introduced at the large scales can be felt down to the small scales. 
The effect of this change in the large-scale anisotropy increases 
as σ increases. 
 

 
Figure 5: Kolmogorov-normalised spectra multiplied by k1*

2, of 
(a) u, (b) v and (c) w for several values of σ at y / δ = 0.125. . ⎯: 
σ = 0; ⎯  ⎯: σ = 0.8; ⎯  −  ⎯: σ = 1.7; ------: σ = 3.3; ---  ---: σ 
= 5.5. 
 
From figure 6, For r* ≤ 10, there is fairly good collapse among 
for 〈(δu*)2〉, 〈(δv*)2〉 and 〈(δw*)2〉, providing support for the 
validation of Kolmogorov similarity hypothesis [18] in the 



 

dissipative range even when the boundary layer is perturbed 
strongly. 
In all the figures, there exist a region where there is no collapse 
among all the data set for 〈(δu*)2〉, 〈(δv*)2〉 and 〈(δw*)2〉 as σ 
increases, suggesting a change in the small-scale motion between 
the perturbed and unperturbed boundary layers. For example, in 
the range r* ≥ 20, the suction data depart from σ = 0 for 〈(δu*)2〉, 
〈(δv*)2〉 and 〈(δw*)2〉, with 〈(δv*)2〉 and 〈(δw*)2〉 exhibiting the 
greater departures. Since v is a more sensitive indicator of the 
large-scale organization than u [12], the departures may suggest a 
difference in the anisotropy of the large-scale motion between 
suction and no-suction. For 〈(δu*)2〉, 〈(δv*)2〉 and 〈(δw*)2〉 , the 
departure increases as σ is increased. It is likely that this large-
scale anisotropic behaviour influences the isotropy of the 
smallest scales as observed in the poorer quality of collapse of 
the suction and no-suction data of 〈(δv*)2〉 in the region r* ≤ 10 
(dissipative range) as compared with a reasonable collapse of 
〈(δu*)2〉, suggesting that the change in the large-scale motion is 
felt down to the smallest scales. While the lack of collapse of 
〈(δv*)2〉 may suggest differences in the anisotropy of the small-
scale motion between suction and no-suction, the departures of 
〈(δw*)2〉 from σ = 0 may not be attributed to a change in the 
anisotropy of the small-scale motion, but may rather highlight 
strictly the differences in the large-scale motion between the 
suction and no-suction. Also, taking into consideration that Rλ 
and the local mean shear are influenced by suction (see figure 4), 
the departures observed in 〈(δu*)2〉, 〈(δv*)2〉 and 〈(δw*)2〉 would 
also reflect the influence of these parameters. 
 

 
Figure 6: Kolmogorov normalized second-order velocity 
structure functions for several values of σ at (a) y / δ = 0.065; (b) 
0.125. (i) 〈(δu*)2〉; (ii) 〈(δv*)2〉; (iii) 〈(δw*)2〉. Symbols are as in 
figure 5. 
 
Conclusions 
Some characteristics of the small-scale motion in a turbulent 
boundary layer subjected to concentrated suction, applied 
through a short porous wall strip, have been examined for a range 
of suction rates. The results indicate that, relative to no-suction, 
both Rλ and the normalised mean energy dissipation rate are 
reduced in the near-wall region when suction is applied, 

suggesting that the structures in this region of the boundary layer 
have been modified. The Kolmogorov similarity hypothesis seem 
to be reasonably well satisfied for suction and no-suction data by 
spectra and second-order structure functions for k*1 > 0.2 and r* 
< 10. However, Kolmogorov compensated spectra and second-
order structure functions for k*1 < 0.2 and r* > 20 depart from 
those for σ = 0, highlighting that suction induces a change in the 
small-scale motion as a result of the manipulation of the large-
scale structures; the magnitude of this change increases as σ is 
increased.  
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