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Abstract

The response of outlet nozzles to upstream flow perturbations of
varying magnitudes is investigated by numerically solving the
quasi-one-dimensional Euler equations. Results are compared
to the analytic linear solutions of Marble & Candel for compact
and finite length choked nozzles, and those of Rienstra for open
nozzles. It is demonstrated that the nonlinear response of the
choked exit nozzle is very close to the linear analytic response at
forcing amplitudes that are representative of those observed in
combustors experiencing limit cycle, thermoacoustic instability.
Although jet formation at an open end cannot be represented by
quasi-one-dimensional flow, the numerical simulations suggest
that the behaviour is slightly more nonlinear than for a choked
outlet at the same forcing magnitudes, but still closely in agree-
ment with the analytic linear solutions.

Introduction

Whenever combustion occurs in a duct, coupling between the
flame and the duct acoustics can result in unstable behaviour
often referred to as ‘thermoacoustic’ instability. Under many
circumstances, the amplitude of the limit cycles can be large
enough to cause flame blowout, structural damage, or unaccept-
able noise. The feedback process between the acoustic distur-
bances produced by the flame and the acoustic excitation of the
flame involves the reflection of disturbances off the outlet of the
combustor, which is typically a choked nozzle. In the case of
experimental test rigs, it is not always possible for the outlet of
the combustor to be choked and instead it is common to have an
open outlet exhausting into a large plenum.

Marble & Candel [5] determined the linear response of both
compact and finite length choked nozzles. Stow et al. [7] de-
veloped theory and performed numerical simulations of the lin-
earised Euler equations for an annular duct, showing that, even
in the three-dimensional case, Marble & Candel’s analysis for
compact nozzles still holds. In their analysis of finite length
choked nozzles, Marble & Candel assumed the stream-wise ve-
locity profile of the steady part of the flow throughout the nozzle
is linearly distributed. Stow et al. offered an alternative low-
frequency asymptotic analysis for finite length nozzles which
allows for an arbitrary stream-wise steady velocity profile and
also for the difference between finite length and compact nozzle
responses to be approximated as an end-correction. Rienstra [6]
performed an extensive low Strouhal number asymptotic analy-
sis for the linear acoustic behaviour of an open outlet.

In a typical thermoacoustic limit cycle, the amplitude of the
pressure perturbations can be 10% of the mean pressure [3].
Under such conditions it is useful to know whether the assump-
tions of linearity made by Marble & Candel [5], Stow et al [7]
and Rienstra [6] are still valid. The purpose of this paper is
therefore to investigate the response of an outlet nozzle to vary-
ing amplitude disturbances in order to determine the validity of
a linear analysis under conditions when, for example, a com-
bustor is in a limit cycle. The response of the outlet nozzle to
upstream flow perturbations is determined by numerically solv-
ing the nonlinear quasi-one-dimensional Euler equations. As

this paper is primarily concerned with the effect of a small dis-
turbance assumption, comparison is only made with Marble &
Candel’s and Rienstra’s analyses for choked and open outlets
respectively. It is demonstrated that, even for relatively large
amplitude disturbances, the response can be accurately repre-
sented by these linear boundary conditions.

Theory

Neglecting diffusive and viscous effects, the system is governed
by the continuity, Euler (momentum) and energy equations. In
this paper, a quasi-one-dimensional form is used
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wherep is the pressure,u the velocity,ρ the density, andA the
cross-sectional area.

Linearisation of the Equations of Motion

A given flow propertyG(x, t), may be split into its steady-flow
valueḠ(x) and a perturbationG′ (x, t). The Euler equations can
then be linearised to first-order in the perturbation quantities. In
a region of spatially uniform steady flow, assuming disturbances
with time dependenceexp(iωt) this gives
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wherec is the speed of sound ands is the entropy. So to first-
order the unsteady field is composed of three characteristics:
a pressure waveP− traveling upstream at the speed of sound
relative to the steady flow; a pressure waveP+ traveling down-
stream at the speed of sound relative to the steady flow; and an
entropy disturbanceσ convecting with the steady flow. In fact,
even in spatially non-uniform flow, it can be shown that the en-
tropy disturbances convect at thelocal flow velocity without
change. In other wordss′/cp is purely a function oft− R

dx/ū.

Compact Choked Nozzle

A nozzle can be considered compact if it has no storage ca-
pacity. Taking the nozzle entrance to be the origin of the sys-
tem, this means that atx = 0, M′ = 0 if the nozzle is choked at
the throat. The Mach number perturbation can be expressed in
terms of the pressure, velocity and density fluctuations to give

p′

p̄
= 2

u′

ū
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Figure 1: Relationship between choked nozzle geometry and
steady velocity distribution.

This is Marble & Candel’s [5] well known boundary condition
for a compact choked nozzle. Substitution of equations (4)–
(6) into (7) yields expressions for the reflection coefficientsRs
andRp, the amplitude of the reflected upstream traveling pres-
sure wave due to incoming entropy and pressure disturbances
respectively

P−

σ
= Rs=

M̄
2+(γ−1)M̄

, (8)

P−

P+ = Rp=
2− (γ−1)M̄
2+(γ−1)M̄

. (9)

Choked Nozzle of Finite Length

In a finite length nozzle, it is not correct to assume that there
is zero storage capacity and that the steady flow field is uni-
form. The analysis must start back at the linearised Euler equa-
tions. To ease the algebraic burden of solving the linearised
Euler equations, Marble & Candel [5] assume that the steady
part of the velocity profile throughout the nozzle increases lin-
early with position. Furthermore, the origin of the co-ordinate
system will no longer be considered the start of the nozzle. In-
stead,x= 0 is the location where the extrapolated nozzle steady
velocity profile reaches zero. Subscript1 designates quantities
at the nozzle entrance, and subscript∗ designates quantities at
the nozzle throat. Thus the nozzle length isx∗− x1. The rela-
tionship between the nozzle geometry and steady velocity is il-
lustrated in figure 1. For convenience, Marble & Candel also in-
troduce the non-dimensional timeτ = c̄∗t/x∗, non-dimensional
positionξ = (x/x∗)2 and reduced frequencyΩ = x∗ω/c̄∗ where
the excitation frequency isω. For periodic disturbances,
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Substituting equations (10)–(12) into the linearised Euler equa-
tions gives
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Equation (14) can giveU(ξ) if P(ξ) is known. P can be found
by solution of equation (13) which is of the hypergeometric
form — a unique solution can only exist if more information
is known about the problem. The pressure disturbance is regu-
lar at the nozzle throat, but the locationξ = 0 occurs before the
nozzle inlet and is out of the domain of interest for this problem.
Thus it doesn’t matter if a singularity in the solution occurs at
ξ = 0. Using this information, it is possible to find both a par-
ticular Pp(ξ) and homogeneousPh(ξ) solution to equation (13)
such thatP= Pp+kPh, wherek is a constant, and each solution
has the form

∞

∑
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an(1−ξ)n+m. (15)

In order to findk it is necessary to couple the solution to the
wave system of the approaching flow. As the flow approaching
the nozzle is spatially uniform, equations (4)–(6) hold, giving
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)
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so given the magnitudes of the incoming pressure waveP+
1 and

the entropy disturbanceσ, equation (16) can be substituted into
(14) to close the solution forP(ξ).

Open Outlet

In practice, the exhaust from an open outlet forms a jet. The
acoustic interaction with the shear layer of the jet separat-
ing from the outlet cannot be modelled with a quasi-one-
dimensional analysis. Rienstra [6] provides an extensive low
Strouhal number asymptotic analysis of the flow and, in com-
parison with experiments, concludes that the employment of a
Kutta condition at the trailing edge of the pipe outlet is essen-
tial in accurately determining the acoustics both within and out-
side the duct. For zero Strouhal number flow, Rienstra’s anal-
ysis gives a pressure reflection coefficient of−1, accurate to
first-order in the flow perturbations. In the absence of a Kutta
condition, to first-order, Rienstra gives the same pressure reflec-
tion coefficient as that given by a simple application of the one-
dimensional mass, momentum and energy conservation laws:

Rp =−(1+ M̄)/(1− M̄). (17)

Comparison of this reflection coefficient with numerical simu-
lations of the nonlinear quasi-one-dimensional Euler equations
may shed some light on the nonlinear effect of high amplitude
disturbances on an open outlet when the Kutta condition is em-
ployed.

Numerical Solver

The quasi-one-dimensional Euler equations were solved us-
ing fourth-order Runge–Kutta time-stepping and a fourth-order
Pad́e spatial finite differencing scheme. These schemes have
very small inherent dissipation and give a highly accurate rep-
resentation of wave propagation [4]. System excitation was
caused by sinusoidally varying the relevant outgoing character-
istic at the inflow boundary. The system inflow boundary was
placed very close to the nozzle entrance so that the nonlinear
propagation of the excitation characteristic from inflow bound-
ary to nozzle entrance was negligible. Simulations were run for
sufficiently long periods of time to ensure that transients were
not present in the final results.

A common source of error in numerical acoustics is the artifi-
cial reflection of disturbances from the system boundaries. In
the absence of spurious disturbances, boundary conditions that



are nonreflecting in the linear characteristics are given by Giles
[2]. As spurious waves can travel at speeds that are signifi-
cantly different to those of physical waves, a scheme as basic as
Giles’ can cause reflection of spurious waves. For this reason,
discretely nonreflecting boundary conditions were employed as
given by Colonius [1]. The chosen scheme was third-order ac-
curate about the Nyquist frequency (spurious) and fourth-order
accurate about the steady state (physical) for incoming waves,
and fifth-order accurate about the Nyquist frequency for outgo-
ing waves. The chosen boundary conditions resulted in very
small reflection of all spurious and physical waves present in
typical simulations.

The numerical scheme was validated by solving a number of
model problems including the linear propagation of small mag-
nitude waves, and nonlinear wave steepening in large pressure
wave propagation. These simulations conformed well with the-
oretical predictions. The close agreement between the results
given by the numerical solver for small amplitude disturbances
and the linear analytic solutions presented in this paper is in it-
self a convincing validation. Initial tests were performed using
a number of grid densities and boundary locations. The results
were independent of boundary location and converged with in-
creasing grid density. For typical simulations, it was necessary
to use around 1000 data points to gain a well resolved solution.

Discussion

Measurement of the linear characteristics in a nonlinear system
can be achieved by re-casting equations (4)–(6) in terms of the
characteristics to give the following definitions
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As already mentioned, the excitation characteristic is sinusoidal
in time. In a linear system, that would mean that the pressure
wave reflected from the nozzle is also sinusoidal. However, the
temporal nature of the reflected pressure wave may be different
for a nonlinear system. A question then arises as how to mea-
sure its magnitude. At the nozzle inlet, it is easy to take a full
steady state period of the reflected pressure wavep−ss(t), and
its Fourier transformF . The magnitude of the response can be
considered the Fourier component occurring at the excitation
frequency,Fω. The nonlinearity is indicated by the difference
between the output and its mode occurring at the excitation fre-
quency. In a normalised form, this can be expressed as

κ =

∣∣|Fω|cos(2πωt +arg(Fω))− p−ss(t)
∣∣
2∣∣p−ss(t)

∣∣
2

, (21)

where|·|2 denotes thè2-norm. Whenκ = 0, the output signal is
sinusoidal at the input frequency which infers a linear response.
Whenκ = 1, all of the output occurs at frequencies other than
the input frequency, suggesting the output is not at all linearly
related to the input.

Simulations were performed in order to measure the reflection
coefficientsRp and Rs for a ‘compact’ choked nozzle over a
range of Mach numbers. In order to ensure compactness, a
value ofΩ = 0.01 was used. The results of these simulations
are shown in figure 2. Even when the excitation characteristics
are as large as 0.1, the numerically determined reflection coef-
ficients are very close to the first-order approximation of Mar-
ble & Candel [5]. This was a surprising result and of practical
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Figure 2: Steady Mach number dependence of the reflection
coefficient of a choked exit nozzle withΩ = 0.01. Marble and
Candel’s compact result for

∣∣Rp
∣∣ in solid line and|Rs| in dashed

line. Simulations for:σ, P+ = 0.5 (◦); σ, P+ = 0.1 (×); and
σ, P+ = 0.001(+).

interest since the pressure perturbations during thermoacoustic
limit cycles can be 10% of the steady state pressure. For ex-
citation characteristics of 0.5, a significant deviation from the
linear approximation is evident, although perturbations of this
magnitude are unlikely to occur in thermoacoustic limit cycles.

Further simulations were performed to measure the effect of fi-
nite nozzle length onRs for a choked exit with a steady approach
Mach number of 0.61 (the same Mach number as that studied by
Marble & Candel [5]). Care was taken to ensure that the geom-
etry enforced a linear steady velocity profile along the nozzle.
Figure 3 shows a Bode plot of the entropy reflection coefficient
for a finite length nozzle. It is clearly observed that the effect
of finite nozzle length is to filter out the reflection of high fre-
quency oscillations. This indicates that in the stability analysis
of many real systems with a choked outlet nozzle, only the low
frequency modes of vibration are of interest. Again the agree-
ment between Marble & Candel’s first-order approximation and
the numerical results is surprising, even forσ = 0.1. Shown be-
low the Bode plot is the nonlinearity measureκ. Although the
higher amplitude excitation still gives a similar reflection coef-
ficient to the linear model, some small nonlinearity is detected
in the waveform of the response. Figure 4 gives an example
of the degree of nonlinearity observed by comparingp− (t) at
the nozzle entrance to its component at the excitation frequency
with κ = 0.05. Note that the time-averaged value of the nonlin-
ear perturbation is non-zero.

Numerical simulations were also performed for the quasi-one-
dimensional flow through an open outlet. The open geometry
was represented by a smooth fractional area change of 100 oc-
curring over a length of 0.005 of the incoming wavelength. This
ensured that the outlet was both compact and emptying into an
approximately infinite plenum. As discussed earlier in this pa-
per, such a flow is not physical due to separation of the flow
from the outlet, and formation of a jet. Nonetheless, figure 5
compares the linear analytic expression to those found numer-
ically. The agreement between the numerical simulations and
the analytical results forRp is good, although the open outlet is
slightly more nonlinear than the choked outlet.

Conclusions

The Euler equations have been solved numerically for the case
of quasi-one-dimensional flow through outlet nozzles. The re-
flection coefficients have been found for open, compact choked
and finite length choked nozzles. For perturbation amplitudes
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Figure 3: Reduced frequency dependence of entropy reflection
coefficient of a choked nozzle with̄M = 0.61. Solid line: Mar-
ble and Candel’s finite length result. Simulations for:σ = 0.1
(×); andσ = 0.001(+).
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as big as 10% of their corresponding steady flow quantities, a
small non-linearity is observed, but the reflection coefficients
are very closely represented by linear approximations. This
suggests that in the analysis of typical thermoacoustic limit cy-
cles, the outlet will be close to linear and the boundary condi-
tions of Marble & Candel as well as Rienstra are applicable.
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