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Abstract

Gravity currents frequently occur in many natural and indus-
trial situations. This article reviews the conceptual foundations
used to understand and evaluate the evolution of gravity cur-
rents. Some of the latest results in specialised areas are high-
lighted. After an introduction, the paper ranges through the
principal effects due to: low Reynolds number; compositional
density differences; density differences due to dilute particulate
matter; density differences due to concentrated particulate mat-
ter; and finally, the motion of a granular medium (with very
little influence of the interstitial fluid). In addition, some effects
due to permeable boundaries, rotation and propagation into an
ambient which is either stratified or uniformly flowing will be
considered.

Introduction

Gravity currents occur whenever fluid of one density flows pri-
marily horizontally into a fluid of different density. (Predom-
inantly vertical motion is described more naturally as plumes
and involves different concepts [1].) There are numerous natu-
ral and industrial occurences of gravity current motions. These
include: the spreading of honey on toast; the propagation of a
relatively cold (and generally slightly wet) sea breeze, as hap-
pens so regularly on the East coast of Australia, across Canberra
and at Perth (the Fremantle doctor); the outflow of the rela-
tively warm and saline Mediterranean water through the Straits
of Gibraltar into the Atlantic; the intrusion of giant umbrella
clouds into the atmosphere following a volcanic eruption; and
the flow of molten glass across a table to make sheet glass.

The first quantitative study of gravity currents was undertaken
by von Kármán [2], who was asked by the American military
to evaluate under what wind conditions poisonous gas released
would propagate forward to envelop the enemy, rather than
backwards to cause havoc to the troops who released the gas.
Using Bernoulli’s theorem, von Ḱarmán showed that the veloc-
ity of the front,u, ahead of a layer of depthh, of relatively heavy
fluid with density excess∆ρ over that of the atmosphereρo was
given by

u/(g′h)1/2 = Fr, (1.1)

where the reduced gravityg′ = ∆ρg/ρo,g is the acceleration
due to gravity and the Froude number,Fr, was evaluated by von
Kármán to be

√
2. This is the condition to be applied at the nose

of a current propagating at high Reynolds numberRe= uh/ν,
whereν is the kinematic viscosity.

Such was the reputation of von Kármán that (1.1) and the paper
in which it appeared quickly became celebrated, even though
von Kármán had not considered the effects of wind in the atmo-
sphere or pointed out that in a particular situation (1.1) is but one
equation for the two unknownsu andh. Benjamin [3] revisited
the problem and argued that von Kármán had used Bernoulli’s
theorem incorrectly (by taking a contour through a turbulent re-
gion) and rederived (1.1) by the use of a momentum integral, or
flow force as Benjamin called it. Benjamin expressed surprise
that he obtained the same result as von Kármán, and was clearly

somewhat distressed by this. However, given that the starting
point of both scientists was an (admittedly different) integral
of the Euler equations, there was not any possibility that they
could have arrived at a different result. In addition, sinceu,g′
andh are the only variables in the (time-independent) problem,
the non-dimensional quantityu/(g′h)1/2 has to be a constant.

Expression of (1.1) has been used in (almost) all studies of grav-
ity currents propagating at high Reynolds number as a form of
conservation of momentum. Gravity currents propagating at
low Reynolds number, behave quite differently, and, indeed, are
not generally controlled at the front at all.

The next section briefly reviews the approach to studying low
Reynolds number gravity currents, before continuing the above
development for high Reynolds number currents, including the
effects of particulate matter, permeable boundaries, rotation, in-
trusion into an ambient and, finally, the collapse of granular
columns. The material is biased towards areas I have been in-
volved with and know best. I hope this stance is understandable,
though it means that a number of important contributions have
not been mentioned.

Viscous Gravity Currents

Viscous gravity currents propagate under a balance between vis-
cous and buoyancy forces. In all problems so far solved the
viscous fluid has been assumed to spread as a thin layer and
the concept of lubrication theory has been appropriate. Thus
the velocity profile is parabolic and conservation of mass leads
to a governing partial nonlinear differential equation in space
and time for the unknown free surface heighth(x, t) as depicted
in figure 1. Thus, for example, for a current spreading along
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Figure 1: A sketch of a propagating gravity current showing
the notation and parabolic velocity profile forRe<< 1 and the
uniform velocity profile forRe>> 1.

a horizontal base in either a wide channel or an axisymmetric
situation, the governing equation is [4]

∂h
∂t
− β

xn

∂
∂x

(
xnh3 ∂h

∂x

)
= 0, (2.1)

whereβ = 1
3g/ν, n = 0 in cartesian coordinates andn = 1 in

radial coordinates (wherex is interpreted as the radius), under
the assumption that the Bond numberB = T/ρl2 << 1, where
T is the surface tension andl some typical horizontal length, so



that surface tension effects along the interface and nose can be
neglected. To the governing equation (2.1) must be added an
overall volume conservation relationship of the form

Z xN(t)

o
(2πx)nh(x, t)dx= qtα, (2.2)

wherexN(t) is the extent of the current and the volume is as-
sumed to beqtα, where, for example,α = 0 represents a con-
stant volume current andα = 1 a current fed at constant flux.

A similarity form of solution is easily obtained for (2.1) and
(2.2) and is written as [4,5],

h(x, t) = ζ2/3
N (q2−n/β)1/(5−n)t [(2−n)α−1]/(5−n)Φ(ζ/ζN) ,

(2.3)
where the similarity variable

ζ =
(

βq3
)−1/(5+3n)

xt−(3α+1)/(5+3n), (2.4)

ζN(α,n) is determined by (2.2) andΦ(w) satisfies the singular
nonlinear differential equation

(
wnΦ3Φ′

)′
+

(3α+1)
(5+3n)

w1+nΦ′−

1
(5−n)[(2−n)α−1]

wnΦ = 0 (2.5)

Φ(1) = 0. (2.6)

The similarity variable (2.4) indicates immediately, with no fur-
ther analysis, that the extent of the current is given by

xN = ζN

(
βq3

)1/(5+3n)
t(3α+1)/(5+3n). (2.7)

Experimental results for the rate of propagation of such viscous
spreading are in excellent agreement with the theoretical de-
termination [4-7]. The motivation for the original study was
the availability of wonderful data on the spreading of the lava
dome formed in the crater of the Soufrière of St Vincent in
the West Indies after the eruption of 1979. The resultant lava
dome slowly increased in volume, and spread horizontally for
five months across the crater floor, by which time the pancake-
shaped dome had a height of 130m, a mean diameter of 870m
and a volume of5×107m3 [8]. Observations of the volume then
indicated thatα = 0.66, which should lead to a radial time de-
pendence, from (2.7), of(3α+1)/8 = 0.37, in good agreement
with the measured value of 0.39. In addition, (2.7) can then
be inverted to determine the reasonable value for the kinematic
viscosity of6×107m2s−1. Considerable further work has been
done to extend this initial model in order to be more realistic
by including the effects of compressibility of the interstitial gas
in the magma [9], and solidification of the thin upper carapace
of the lava dome [10,11]. The theoretically determined shape,
(2.3) has also been successfully used to describe the shape of
the numerous lava domes recently observed on Venus [12].

The flow at low Reynolds number of a viscous fluid down a
slope occurs in many different situations: the splattered wet
mud down a car windscreen; liquid detergent on a slanted plate;
and rainwater down the roof of a glass conservatory. A funda-
mental problem, which has acted as the foundation of further
studies, is whether a broad band of viscous fluid, uniform in
depth across the slope, can continue to flow in a fashion inde-
pendent of the cross-slope coordinate. This situation was first

considered by Huppert [6] who showed, again under the as-
sumption thatB << 1, that there is a parabolic velocity profile
and that the free surfaceh(x, t) is governed by

∂h
∂t

+(gsinθ′/ν)h2 ∂h
∂x

= 0, (2.8)

wherex is the coordinate down the slope, which is inclined at
angleθ to the horizontal. By use of either the theory of charac-
teristics or by similarity theory, Huppert showed that the appro-
riate theoretical solution of this two-dimensional flow was

h = (ν/g sinθ)1/2 x1/2 t−1/2 (2.9a)

for

0≤ x < xN =
(

9A2g sinθ/4ν
)1/3

t1/3, (2.9b)

whereA is the initial cross-sectional area of the current. The
relationship (2.9a) indicates that at any time the free surface
increases in thickness down the slope like the square root of the
coordinate down the slope until the pointx = xN at which point
the current ends (abruptly in this solution that neglects surface
tension) and that at any point down the slope, once the current
has passed overhead, its thickness decreases like the square root
of time.

To test the validity of this theoretical prediction, Huppert con-
ducted a series of experiments with different viscous fluids
flowing down slopes of different angles to the horizontal. Ini-
tially the motion was virtually independent of the cross-slope
coordinate and in good agreement with the predictions of (2.9).
However, after some time the flow front spontaneously de-
veloped small amplitude waves of fairly constant wavelength
across the slope. The amplitude of the waves increased in time
as the maxima (point furthest down the slope) travelled faster
than the minima. The wave length remained unaltered. For sil-
icon oils the subsequent shape was a periodic, triangular front
with tightly rounded maxima, connected by very straight por-
tions at an angle to the slope, to extremely pointed minima. For
glycerine, the shape was also periodic, though with much less
tightly rounded maxima, again connected by extremely straight
portions, almost directly down the slope, to very broad minima.
To my knowledge no other shape has been seen for different flu-
ids. The initial instability is due to the effects of surface tension,
which were neglected in the two-dimensional analysis. Incor-
porating these effects at the tip, Huppert was able to show that
the wavelength of the instability was well represented by

λ =
(

7.5A1/2T/ρgsinθ
)1/3

, (2.10)

independent of the co-efficient of viscosity, which only sets the
timescale of the instability and its onset.

Compositional Currents

In (almost) all situations, very soon after release, a current
whose density difference is due to a dissolved component, such
as salt, so that the density is conserved, propagates in such a
way that its horizontal extent is very much larger than its verti-
cal extent. Under the assumption that the Reynolds number is
large, the balance is then between inertial and buoyancy forces
and standard shallow water theory [13] can be applied. Alter-
natively, Huppert and Simpson [14] introduced the concept of
a “box model”, which considers the simple model that results
from assuming the current to evolve through a series of equal
area rectangles, or equal volume cylinders, as appropriate, with
no variations of any properties in the horizontal. (An integral
justification of this approach is given in [15]). This approach
leads immediately to the relationship

xN = C(Fr)(g′A)(2−n)/6t(4−n)/6, (3.1)



where C(Fr) is dependent only on the Froude number and A is
the cross-sectional area in two dimensions (n=0) and the volume
in three dimensions (n=1) of the current. Even if mixing occurs
the productg′A remains constant, and equal to the initial value.

The use of similarity theory [16-18] leads to a relationship
which differs only in the premultiplicative constant in (3.1), and
then only by a relatively small quantitative amount. (But that is
the power of the correct dimensional constraints!)

Entrainment of ambient fluid into the flow has been investigated
both theoretically and experimentally [19,20] by following the
intrusion of an alkaline current into an acidic ambient. Entrain-
ment takes place almost entirely at the head of the current ow-
ing to shear instabilities on the interface between the current
and the ambient and by the over-riding of the (relatively less
dense) ambient fluid as the head propagates over it. An entrain-
ment or dilution ratioE, defined as the ratio of the volumes of
ambient and original fluid in the head, which hence must be
non-negative, can be shown by dimensional analysis, and was
confirmed by experiment, to be independent ofg′, and to be

given in two dimensions byE = [1−c1yN/A1/2
s ]−c2−1, where

As is the cross-sectional area of fluid in the head at the end of
the slumping phase (which occurs before the current has propa-
gated about 10 lock lengths),yN is the position of head beyond
the slumping point [14], andc1 ≈ 0.05 andc2 ≈ 1.5 are empir-
ical constants determined by the roughness of the floor.

Particulate-laden Currents

When heavy (or possibly relatively less dense) particles drive
the flow the major new addition to the advective effects is that
the particles fall (or rise) out of the flow and the driving buoy-
ancy continually decreases. Examples of this form of motion
are the terrifying flows seen in lower Manhattan on Septem-
ber 11 and the awesome hot, ground-hugging pyroclastic flows
which can be the life-threatening, destructive result of volcanic
eruptions such as occured recently at Pinatubo in Indonesia, Un-
zen in Japan and Montserrat in the Caribbean. After a suffi-
cient number of particles have dropped to the ground, so that
the bulk density of this hot flow is no longer greater than that
of the surrounding atmosphere, the current can suddenly rise
quite dramatically, taking much particulate matter high into the
atmosphere.

The approach most frequently taken to analyse the sedimenta-
tion if the concentration is not too large is to assume that the
(high Reynolds-number) flow is sufficiently turbulent to main-
tain a vertically uniform particle concentration in the main body
of the current. However, at the base of the flow, where the
fluid velocities diminish appreciably, the settling of particles
occurs at the (low-Reynolds-number) Stokes velocityVs in oth-
erwise quiescent fluid. Quantitatively, this indicates that, ne-
glecting particleadvectionfor the moment and assuming that
the particles are all of one size, ifNp (which is possibly a func-
tion of time and position) denotes the total number of particles
per unit horizontal area in a layer of depthh, the change of
Np in time δt,δNp, due only to the sedimentation, is given by
δNp = −VsC0δt, whereC0 is the (number) concentration (per
unit volume) just above the base of the flow. Vigorous turbulent
mixing implies thatC0 = Np/h, which (on taking the appro-
priate infinitesimal limits) indicates thatdNp/dt =−VsNp/h, a
relationship which has been carefully verified by experiments
[21]. Incorporation of advection of particles by the mean flow
then results in

D
Dt

φ≡ ∂φ
∂t

+u.∇φ =−Vsφ/h, (4.1)

whereφ is the volume concentration of particles.

Shallow water equations incorporating (4.1) are easily derived
[17,18]. There are no similarity solutions and recourse, in gen-
eral, has to made to numerical solution. There is very good
agreement between the numerical solutions and experimental
determinations carried out specially to test them.

Aside from numerical solutions, it is also possible to develop
asymptotic, analytic solutions based on the smallness ofβS =
VS/(g′oho)1/2, whereg′o is the initial reduced gravity of the
system [15]. This is an example of the interesting problem
which can be stated in general as the nonlinear partial differ-
ential equation

N1[Φ(x, t)] = εN2[Φ(x, t)], (4.2)

whereN1 andN2 are nonlinear operators in some spatial coor-
dinatex and timet. For ε ≡ 0 there is a similarity solution to
(4.2) and a special value ofx,x∗ say, such as that at the nose of
the current, which increases continuously with time of the form
x∗ = f (t). However, forε 6= 0, no matter how small, (4.2) does
not have a similarity solution and eventually, for sufficiently
larget,x∗ attains a constant. Thus, in the style of singular per-
turbation problems, for sufficiently larget the solution forε = 0
departs by as much as you like from solutions forε << 1. It
must, on the other hand, be possible to obtain asymptotic solu-
tions to (4.2) in a perturbative sense. Such a technique is con-
structed, in part, in [15].

When there is an external flow present, as originally put to
von Kármán, the propagation of the current is significantly in-
fluenced, and in a different way if it is propagating with the
ambient flow or against it. Hogg and Huppert [22,23] initi-
ated an analysis and a series of laboratory experiments to in-
vestigate this case. They showed that in two dimensions the
flow was dependent on the single non-dimensional parameter
Λ = UA/(l2∞VS), whereU is the effective mean external flow
experienced by the current (shown in [22] to be 0.6 times the
actual current),A is the cross-sectional area (or volume per
unit width) of the fluid instaneously released at the base of the
flow, the reduced gravity of the particles of densityρP is given
by g′P = (ρP− ρa)g/ρa,ρa is the density of the ambient and
l∞ = (g′P)φoA3/V2

s )1/5. The parameterΛ represents the ratio
of the mean external velocity to the settling velocity of the par-
ticles. WhenΛ is small, (little effect of the flow in the ambi-
ent) the flow is roughly the same upstream or downstream. As
Λ increases the effects of the flow in the ambient increase and
the upstream flow is considerably restricted. However, even for
large Λ there will still be some upstream propagation—much
to the disbelief and then dismay of the government official who
asked me to carry out this work in order to show that a new
dredging technique which removed sand from the bottom of the
harbour, by blowing high velocity water at it, would be totally
removed by the outgoing tidal flow and not propagate at all up-
stream across the harbour and contaminate the highly valuable
stocks of fish and oysters there! Figure 2 presents the theoreti-
cally determined maximum non-dimensional upstream distance
of a particulate intrusion in a uniformly flowing ambient as a
function ofΛ and the laboratory experimental data obtained us-
ing various size particles. The agreement shown is excellent;
and one of the best I have ever obtained in my career, and hence
my pleasure with it.

Extensions of this idea to an axisymmetric (rather than line)
source are summarised in [24,25] where the relevant parame-
ters and shape of the current are carefully discussed. My clever
graduate student, Anja Slim, [26] is also working in this area for
her Ph.D. and has already developed a number of results with
the final aim of understanding the details of how an initially ver-
tically penetrating, particulate-rich, volcanic eruption column is
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Figure 2: The theoretical prediction and experimental data of
the maximum nondimensional upstream penetration of a partic-
ulate gravity current in a uniform flowing ambient,x∗/l∞, as a
function ofΛ = UA/(VSl2∞) for three different particle sizes.

influenced high in the atmosphere by the prevailing winds.

Further details of some of this work can be found in [27].

Additional Effects

The preceding four sections have detailed some of the funda-
mental relationships for the propagation and evolution of a grav-
ity current. Many other special effects are possible. We will de-
scribe some of these under the headings of: effects of a perme-
able boundary; intrustion below a stratified ambient; and effects
of rotation.

Permeable boundaries

There are many natural and industrial situations where a gravity
current flows over a permeable boundary and seeps into it. Ex-
amples include protecting liquid-containing structures by sour-
rounding them with a deep gravel bed, the seepage of tidal in-
flow up a beach and the everyday occurrence of honey seeping
into toast. The most important new ingredient is that fluid from
the current continuously seeps through the boundary, which re-
duces the volume of the current whose propagation must even-
tually cease.

The flow of the current at low Reynolds number was considered
by Acton, Huppert and Worster [28]. The parabolic velocity
profile in the current is augmented by a sink term in the local
continuity equation which leads, in two dimensions, the only
situation that has been investigated, to

∂h
∂t
−β

∂
∂x

(
h3 ∂h

∂x

)
=−(kg/ν)(1+h/l), (5.1)

which takes the place of (2.1), where the term on the right hand
side represents effects of the flow into the porous medium be-
low, which is categorised by the intrinsic permeability of the
mediumk and l denotes the length of the current. In contrast
to the situation for an impermeable boundary, (5.1) has a simi-
larity solution only for the special case ofα = 3, for which the
flux into the current at the origin just balances that out of the
current through the permeable boundary. For other values of
α solutions of (5.1) must be obtained by numerical integration.
This was done by Actonet al. [28], who also carried out spe-
cial experiments to compare observational data on the length
of the current as a function of time with their numerical solu-
tion. The result, as shown in figure 3, resulted in an extremely
good comparison, with a final run-out length which scales with

SH =
(
A2k

)1/3
for α = 0. Forα < 3 all currents eventually stop;

for α≥ 3 all currents continue to propagate because the incom-
ing flux overpowers the seepage. Note the similarity in concept
between the slow loss of driving force due to seepage, consid-
ered here, and the loss of buoyancy due to slow particle fallout,
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Figure 3: The nondimensional length of a low Reynolds number
gravity current flowing over a permeable boundary as a function
of the dimensionless time for seven different experiments. The
solid curve is the theoretical prediction determined from nu-
merical integration of (5.1) and the dashed line is the similarity
solution for an impermeable boundary given by (2.7).

considered in Section 4. The general approach discussed there,
as outlined in [15,29] has not been applied to this area, though
it no doubt could be done so fruitfully.

When the current propagates at high Reynolds number the bal-
ance of forces are of course different, but the importance of
seepage through the boundary is still paramount. This problem
was initially considered by Thomas, Marino and Linden [30]
and then extended by Ungarish and Huppert [31]. The latter
solved numerically the shallow water equations governing mass
and momentum for a two-dimensional geometry as well as ob-
taining analytical, box model solutions in both rectangular and
axisymmetric geometries. This allowed closed form solutions
for the extent of the current as a function of time and its final
extent to be determined, which were in fair agreement with both
the two-dimensional experiments carried out by Thomaset al.
[30] and the numerical solutions.

Propagation under the base of a stratified ambient

In all the aforegoing discussion, it has been assumed that the
ambient is homogeneous and not influenced in any way, in par-
ticular set into motion, by the intruding current. However, in
both the atmosphere and in the oceans the ambient is stratified;
and it immediately raises the question of why the solutions so
far obtained are applicable in these more complicated, natural
situations—or has something important been left out? What
clearly has been left out of the homogeneous models is the pos-
sibility of exciting internal waves in the ambient by the propa-
gation of the current. Viewed from another angle, the question
that needs considering is what fraction of the potential energy
stored in the original (unstable) buoyancy distribution is lost to
the internal wave motion, in contrast to that which is put into the
kinetic energy of motion and that which is dissipated. The first
investigation of the influence of a stratified ambient was pre-
sented by Maxworthyet al. [32]. They investigated the propa-
gation of a saline current below a linearly stratified saline ambi-
ent in a rectanglular container. Their study was a combination
of laboratory and numerical experiments. The numerical solu-
tions, obtained from a full Boussinesq formulation, were in very
good agreement with their measurements. They focused atten-
tion on the speed of propagation of the nose during the initial
stage only, for which a good agreement between theory and nu-
merical computation was obtained. Ungarish and Huppert [33]
then extended this investigation by determining appropriate an-



alytical solutions. Using the methods of characteristics on the
non-linear shallow water equations, which neglects the influ-
ence of waves in the ambient, they were able to obtain solutions
for the front velocity as a function of the parameterS, defined as
the ratio of the density difference between the fluid that makes
up the bottom of the ambient and that at the top to the density
difference between the fluid of the incoming current and that
at the top. The results of their calculations, compared with the
Maxworthyet al. experimental results, makes up figure 4.
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Figure 4: The Froude number, as a function of the logarithm of
the inverse stratification parameterS for a high Reynolds num-
ber gravity current propagating beneath a stratified ambient for
different initial depth ratios. The theoretical evaluation of Un-
garish and Huppert [105], represented by the solid curves, are
compared with the experimental results suggested by Maxwor-
thy et al [32], represented by dashed curves

Ungarish and Huppert are currently considering how to incorpo-
rate the effects of stratified waves in the ambient. They intend
first to solve a linear leewave model coupled to a deforming
current and thereby evaluate the amount of energy that has gone
into the waves. At the same time, they are carrying out labora-
tory experiments in which an array of conductivity probes will
allow a direct sampling of the wave displacements in the ambi-
ent, from which, using sophisticated processes in signal analy-
sis, the energy given up to the waves in the ambient will be de-
termined as a function ofSand the geometry of the container—
a wave guide ifl >> H, the depth, and an effectively infinite
medium into which the waves can radiate away ifl << H.

Some effects of rotation

Rotational effects, which can be dominant, for example, in
rapidly rotating systems in the laboratory, in industrial machines
or due to the rotation of the Earth, brings in the initially counter-
intuitive effect that fluid flows at right angles to the pressure gra-
dient, in analogy with at least my experience of life, where you
push in one direction and the result goes off in another—a con-
cept which the naive, inexperienced young never understand!
The effect of rotation on gravity currents can be particularly
powerful in the presence of a boundary because a pressure gra-
dient into the wall can easily be set up and drive a current which
hugs the boundary [34]. These situations have been reviewed in
detail by Griffiths [35].

An experimental investigation of axisymmetric gravity currents,
where boundaries play no role, was carried out at the large ro-
tating system housed in the Coriolis laboratory at the Labora-
toire des Ecoulements Geóphysiques et Industriales, Grenoble

by Hallworth, Huppert and Ungarish [36]. The major new fea-
ture of the results was the attainment of a maximum radius of
propagation, attained in about one third of a period of revolu-
tion, in contrast to some theories which, totally unjustifiably,
assume from the outset that the motion goes on for many rota-
tion periods before anything interesting happens. The observed
result had been predicted earlier by a theoretical investiga-
tion of the governing shallow water equations by Ungarish and
Huppert [37], who evaluated thatrmax≈ 1.6C 1/2, whereC =
Ωo/(hog′)1/2, Ω is the rotation rate of the instrument and the
initial dense fluid, of reduced gravityg′ was initially contained
in the cylinder of radiusro and heightho. Thereafter the motion
in the fluid consisted of a contraction/relaxation/propagation of
the current with a regular series of outwardly propating pulses.
The frequency of these pulses was observed to be slightly higher
than inertial, independent ofho andg′, with an amplitude of the
order of magnitude of half the maximum radius, as shown in
figure 5.
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Figure 5: The radius of the leading edge of successive outward
propagating fronts as a function of time for gravity currents in-
truding into a homogeneous, rotating ambient.

Concentrated Flows: Mud, Slurries and Landslides

As the concentration of particles increase, the statement of
low concentration employed in driving (4.1) on the assump-
tion that each particle sediments with its independent Stokes
freefall speedVs becomes less reliable. New effects must en-
ter; and indeed, as the concentration becomes very high this
situation relates more to mud flows than to the motion of sus-
pended particles. Partly to investigate this problem, Hallworth
and Huppert [38] carried out a systematic series of experiments
on the instantaneous release of two-dimensional, heavy particle-
driven gravity currents down a channel. Relatively low con-
centrations, with initial volume concentrationsφo in the range
0 < φo < 0.275were well described by the numerical solutions
of (4.1) or the analytical box models associated with it, with the
final runout length of the sedimented deposit increasing withφo.
Beyond this critical initial volume fraction of particles, the re-
sulting dense current came to an abrupt halt at some point down
the channel, depositing the bulk of its sediment load as a rela-
tively thick layer of fairly constant thickness, characterised by a
pronounced, steep snout. A very much thinner layer of sediment
extended for some distance beyond the arrest point. This layer
was deposited from the subsequent propagation of a slower
moving, low concentration residual cloud and the final runout
length of the sediment layer decreased with increasingφo. This
form of motion was observed for0.275< φo < 0.45, this upper
limit being the approximate maximum for which Hallworth and
Huppert were able to produce a fluid-like initial volume.

Over the last decade, for its obvious natural applications there
has been considerable research to try to understand these high-
concentration flows, exemplified by mud slides. Large mud
flows can occur in mountainous regions after intense rains
where they can move large boulders and even trees to cause
enormous damage and loss of life and produce interesting al-



luvial fans. They also occur on submarine continental slopes,
where they contribute to geomorphological evolution. There
is hence considerable interest in both the geological and engi-
neering community in such flows. Unfortunately, in contrast
to all the work so far described in this article, for which it has
been assumed that the constitutive relationship is Newtonian, it
is quite definite that mud and the like are non-Newtonian. But
how are they to be described? A plethora of rheological models
have been proposed—power law, viscoplastic, Bingham plas-
tic, Herschel–Bulkley,. . . Because of these different conceptual
models, it is difficult to carry out systematic experiments which
either test or verify any of these flows. Each person understand-
ably views the possible contributions to the broad spectrum of
science differently, but I find it unsatisfying working in areas
where the fundamentals are on such shaky ground. Neverthe-
less, considerable activity has been shown in this area, which
might be broadly and briefly summarised as follows.

The main new effect that enters is the possibility of a critical
yield stress,τo, below which there is no shear possible in the
flow. (There are similarities here to some of the models for
non-Newtonian lava flows, nicely reviewed in [39].) This leads
to a variety of features which are unknown in Newtonian fluids,
even in quite simple situations. For example, a uniform layer
of fluid mud can remain stationary on an incline, if the depth of
the mud or the slope of the incline is sufficiently small. When
motion does occur it is generally investigated under two approx-
imations: either the flow is so slow that inertia is neglected (the
more usual case); or so fast that a boundary-layer approxima-
tion is appropriate. A variety of different initial set-ups have
been solved for the motion of the mud and its final shape on
a horizontal surface, down an inclined plane and over a gently
sloped conical surface, representing a shallow basin or hill [40,
41]. Much further work in this area needs to be done before a
good scientific understanding has been obtained and the results
can be applied to the all-important area of hazard assessment,
with the potential to save hundreds of thousands of lives and
millions of wasted dollars.

Granular flows

Partially motivated by recent interest in the flow of granular
medium, my superb geological colleague, Steve Sparks, a stu-
dent Gert Lube and I conducted a series of experiments in which
various granular materials, initially contained in a vertical cylin-
der, were rapidly released onto a horizontal surface to spread out
unhindered over it [42]. The materials were couscous, rice, dry
sand, salt and sugar, all of which have different size and shape.
The horizontal plane used was either wood, a smooth surface of
baize lying on wood, a smooth transparent Plexiglas plane or a
rough plane of sandpaper. The detailed spread of the granular
material was independent of the explicit grains employed or the
bounding surfaces. Eight different cylinders,in radius,r i , from
1.7 to 9.7 cm, were used. Some experiments were recorded and
later analysed on a digital high-speed video at 500 frames per
second. After all motion had ceased, the profile of the resultant
deposit was measured, to find the final runout radius,r∞, cen-
tral cone height,h∞, and the steepest incline,α, of the upper
surface.

For all values of the initial aspect ratioa= hi/r i , wherehi is the
initial height of the granular medium, there was a central undis-
turbed cone of material which did not partake in the motion,
whose angle was close to 60◦, corresponding to an aspect ratio
of 1.7. This can be interpreted as an internal friction angle for
the material. At the base, three different regions were captured
by video during the collapse: a stationary circular region, of ra-
dius r i ; a ring of previously deposited particles; and an outer
ring of material which was still flowing. These last two regions

were divided by a moving interface that propagated outwards
until the flow front came to rest.

Observations from the high-speed photography indicate that
other aspects of the motion naturally divide themselves into
three different regimes dependent ona . For initial aspect ra-
tios a < 1.7, the upper surface of the released material was di-
vided into an inner stationary circle (which remained at the ini-
tial height,hi) outside of which was flowing material. After the
flow front had ceased propagating, a moving interface on the
upper free surface appeared, which separated static from flow-
ing particles and which propagated inward from the stationary
front. Fora < 1 the final deposit consisted of an inner, undis-
turbed central region beyond which there was an axisymmetric,
tapering frontal region withα in the range of the angle of re-
pose. For1 < a < 1.7 the avalanching which occured after the
flow front had stopped moving removed the undisturbed central
region.

For a > 1.7 the entire upper surface flowed from the beginning
of each experiment. Initially, the upper free surface remained
undeformed and horizontal. After the column lost some height,
deformation of the top occurred, to form a dome whose radius
of curvature decreased with time. The final deposit had a steep
central zone and an axisymmetric tapering frontal region with
α less than the angle of repose.

A transition in behaviour of collapse was evident from the video
analyses to occur whena exceeds about ten. Immediately upon
lifting the container the entire free surface began to flow. A
flow front developed at the base of the column and propagated
outwards while removing material from the centre. In contrast
to lower initial aspect ratios, the upper surface of the column
remained undeformed until its height sank to that of the neigh-
bouring flat frontal region. Also, once the flow at the base had
ceased, an interface between moving and stationary material ap-
peared on the upper free surface but propagated outward from
the centre to the flow front. The value ofα decreased monoton-
ically with increasinga.

The quality of the observational data and the similarity of the
results for the different materials suggest that, with the use of
dimensional analysis, the data can be collapsed in a systematic
way. The initial experimental set up is determined byr i ,a andg,
the acceleration due to gravity. Our ability to collapse all the
data using only this input, and not any material properties, is a
robust test for the assumption that no additional material prop-
erty, such as the friction between individual grains, is needed to
describe the motion.

The difference between the initial and final radius,δr = r∞ −
r i , must be expressible asδr = r i f (a). A plot of δr/r i makes
up figure 6. Fora < 1.7, because there is no motion of the
inner region, the resultant expression must be independent ofr i ,
which requires thatf (a) ∝ a. From figure 6 we determine that
the constant of proportionality which best fits the data is 1.3.
For a > 1.7 the best fit power law to the data for all grains is
given by f (a) = 1.6a1/2.

The final height at the centre is similarly expressible ash∞ =
r iη(a). Figure 6 also presents all the data forh∞/r i as a func-
tion of a. Fora< 1.7, h∞ = hi , and soη(a) = a, as indicated by
the data. For1.7< a< c.10the best fit power law to the data is
given byη(a) = 0.88a1/6. Fora > c.10 there is a clear indica-
tion thath∞ decreases with increasinga. This is in response to
the wave that originates from the centre and removes material
outwards. Unfortunately, the data are a little too scattered to be
quantitatively analysed with confidence.

So far the parameterg has not entered our expressions because
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Figure 6: Nondimensional radial displacement and height at
the centre of a pile of axisymmetric collapsing grains. Points
marked with a cross are for experiments in which the cylinder
was raised heightH from the base before releasing the grains,
and the aspect ratio is defined as(H +hi)/r i . This shows that in
the final runout distance only maximum initial height is relevant
(and initial radius).

it is the only input parameter for which time is involved in its di-
mensions, andδr,h∞/r i are both independent of time. The value
of g will affect the total time for collapse,t∞, which is defined
as the time between the initiation of the experiment and that at
which the flow front stops propagating. The high speed video
allowed us to determinet∞ reasonably accurately. By dimen-
sions, it must be of the formt∞ = (r i/g)1/2ψ(a), for some func-
tion ψ(a). A plot of t∞/(r i/g)1/2 as a function ofa is presented
in figure 7. As before, fora< 1.7, an expression independent of
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Figure 7: Nondimensional time until the grain front ceased mo-
tion as a function ofa.

r i requiresψ(a) ∝ a1/2, which is consistent with the data for a
constant of proportionality of 3.8. Fora> 1.7 the best fit power
law through the data yieldsψ(a) = 3a1/2, which indicates that
t∞ = 3(hi/g)1/2. Note that the time taken for a particle to fall a
heighthi under gravity is(2hi/g)1/2, which is just less than a
half of t∞.

Further insight is obtained by an analysis of data on the radius of
the flow front as a function of time,r(t). For all flows there was
a primary acceleration phase during which the acceleration was
approximately constant between 0.25 g and 0.3 g. Fora < 1.7
this acceleration phase was followed by a phase of decelera-
tion which came quite abruptly to a halt. Fora > 1.7 these
two phases were separated by a phase of constant velocity of
the flow front whose duration increased with increasinga. This
phase of constant velocity has an analogue with the evolution of
a fluid axisymmetric gravity current spreading at high Reynolds
number, which also goes through a stage of constant velocity
[14]. A fluid current then adjusts under a balance between buoy-

ancy and inertial forces, spreading liket1/2 [cf.(3.1)]—the same
result as obtained for the granular collapse described here. This
analogy, which uses quantitative relationships to describe the
motion of the granular medium that are closely analogous to
those used to describe the motion of density currents of Newto-
nian liquids, further strengthens our argument that intergranular
frictional effects play a negligible role until the abrupt halt com-
mences.

Obtaining the spreading relationships that our experiments have
indicated remains a challenge for the future. A difficulty is that
for at least half of the flow the concepts of shallow water theory,
as applied by some to this problem, are false. In the meantime,
a clue to understanding the emplacement we have observed may
come from an interpretation of the final stages, when the spread-
ing pile comes to a rapid halt. It has been suggested that granu-
lar materials can be considered in two states [43]: a static solid
state, where intergranular forces at particle faces give the ma-
terial strength; and a liquid state, exemplified by granular flows
and fluidised beds, where the particles are in anagitated state
and the system has negligible strength. The abrupt cessation of
the motion of the granular flows that we observed can be likened
to a phase change between two states [44]. In accord with the
characterisation put forward in [45], the change of state can be
envisaged as a kinetic process analogous to solidification of a
true liquid. In the case of a granular medium, we suggest that
as the flow decelerates, the granular temperature falls below a
threshold value and frictional interactions between particles be-
come dominant and the granular material converts to a static
solid (or deposit).

Conclusions

Since the propagation and evolution of gravity currents was first
quantitatively analysed more than sixty years ago, a lot has been
determined. The rates of propagation under many different situ-
ations have been evaluated, as described in the various sections
of this article. The subject area has seen considerable active
research over the last thirty years or so, primarily due to the in-
fluence of the giant names in the subject, including von Karmen
[2], Benjamin [3] and Simpson [45]. Part of the drive for the
research has come from the natural applications to flows in the
oceans, atmosphere, on the Earth surface and also deep within
the Earth along particular phase boundaries [5,46] as well as to
many engineering and industrial problems.
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