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Abstract

Recent studies by the present authors have explored, both empiri-
cally and analytically, the nature by which the terms in the mean
momentum equation, as applied to canonical turbulent wall flows,
sum to zero as a function of distance from the wall. To establish
a context for the present work, the previously unrecognized struc-
tural and Reynolds number scaling properties revealed in these pre-
vious studies are succinctly reviewed. These characteristics are then
used as the basis for composing a physical model for the turbulent
boundary layer. The model is constructed such that it appropriately
embraces the dynamical structure of the mean flow, while remaining
consistent with independent empirical observations. Implications of
the proposed model relative to the well-established view of bound-
ary layer structure are briefly discussed.

Introduction

An established tack for describing turbulent wall flow structure
begins with an examination of the distribution of the mean ax-
ial velocity as a function of distance from the wall, U

���
y
���

, in
concert with an examination of the mean viscous stress profile,
∂U
���

∂y
� �

y
� �

, relative to the magnitude of the Reynolds shear
stress profile, T

� �
y
� ���	�

uv
� �

y
� �

. (In these expressions the su-
perscript 
 denotes normalization by the kinematic viscosity, ν, and
the friction velocity, uτ = � τwall

�
ρ, with τwall and ρ being the mean

wall shear stress and mass density respectively.) Such an analysis
naturally leads to the well-accepted interpretations regarding the av-
erage dynamical characteristics of the constituent layers nearly uni-
versally employed to describe to boundary layer structure, e.g., [1].
Empirical data directly relevant to the mean momentum balance,
however, reveal a layer structure that differs considerably from the
sub, buffer, logarithmic and wake layers ascribed to the mean ve-
locity profile [2]. Given this, the objectives of the present effort are
to: i) outline the origin and basic features of this newly revealed
dynamical layer structure, ii) propose a consistent physical model,
and iii) briefly discuss the implications of this model relative to the
more traditional view of boundary layer structure.

Review of Momentum Balance Properties

An important premise underlying the layer structure to be described,
and, in turn, the proposed model, is that the Reynolds Averaged
Navier-Stokes (RANS) equation in its unintegrated form (and in this
case as applied to boundary layer flow over a planar surface located
at y

�
0),

U
� ∂U

�
∂x
� 
 V

� ∂U
�

∂y
� � ∂2U

�
∂y
�

2 
 ∂T
�

∂y
�� (1)

provides the primary description of mean flow dynamics. (Herein, x
is the axial coordinate, y is the wall normal coordinate, U and V are
the velocity components in the x and y directions respectively, up-
per case letters represent mean quantities, lower case letters denote
fluctuating quantities, tilde denotes instantaneous quantities (i.e.,

ũ
�

U 
 u), an overbar denotes time averaging, and vorticity com-
ponents are identified by their subscript.) The left side of Eq. 1
represents mean flow advection, while the right side terms repre-
sent the viscous and Reynolds stress gradients respectively. Since,
for the flat plate flow, there are only these three distinct dynami-
cal effects, the ratio of any two determine the nature by which the
equation is balanced.

Layer Structure

Wei et al. [2] explored the structure of boundary layer, pipe and
channel flows by examining the ratio of the last two terms in Eq. 1.
Interpretation of this ratio is as follows:

1. If � ∂2U �
∂y � 2

� ∂T �
∂y � ��� 1 then the Reynolds stress gradient term is

negligible and Eq. 1 sums to zero essentially through a balance
of the mean advection and viscous stress gradient terms.

2. If � ∂2U �
∂y � 2

� ∂T �
∂y � ��� 1 then the mean viscous stress gradient term

is negligible and Eq. 1 sums to zero essentially through a
balance of the mean advection and Reynolds stress gradient
terms.

3. If � ∂2U �
∂y � 2

� ∂T �
∂y � ��� 1 then the Reynolds stress and viscous stress

gradients balance and are either greater or of the same order
of magnitude as the mean advection term.

Relevant premier quality experimental and DNS data [3, 4, 5] were
differentiated and the indicated ratio was examined as a function of
distance from the wall, y

� �
yuτ

�
ν, for differing Reynolds numbers,

δ
�

, where δ is the boundary layer thickness.

The sketch of Figure 1 depicts the behavior of the stress gradient
ratio at any fixed δ

�
. As indicated, there exists a four layer struc-

ture. Layer I retains the character of the viscous sublayer, and in the
boundary layer is a region where the viscous stress gradient nomi-
nally balances mean advection. In layer II the magnitude of the ratio
is very close to unity, and thus is called the stress gradient balance
layer. Across the mesolayer (layer III), the Reynolds stress gradient
changes sign and the terms in Eq. 1 undergo a process of balance
breaking and exchange [2, 6]. The net result of this process is that
from the outer edge of layer III to y

�
δ (i.e., layer IV) Eq. 1 is

characterized by a balance between mean advection and turbulent
transport via the Reynolds stress gradient.

Reynolds Number Scaling Behaviors

The qualitative features of Fig. 1, depicted for a fixed Reynolds
number, persist for the Reynolds number range currently accessi-
ble to inquiry. Quantitatively, however, this layer structure has been
shown [2] to exhibit distinct Reynolds number dependencies relat-
ing to both the wall-normal extent of the layers and the velocity
increment across each of the layers. Table 1 presents these scaling
behaviors as normalized by inner variables. As is evident, layers I



Figure 1: Sketch of the ratio of the viscous stress gradient to the
Reynolds stress gradient (terms on the right side of Eq. 1) in a tur-
bulent boundary layer at any given Reynolds number. Layer I is
characterized by a balance between mean advection and the viscous
stress gradient; dashed line. (Note that in a pipe this balance is be-
tween the mean pressure gradient and the viscous stress gradient.)
In layer II the balance is between the viscous and Reynolds stress
gradients. Layer III is a mesolayer in which all three terms in Eq. 1
are of the same order of magnitude, except that in a part of it, the
Reynolds stress gradient is negligible. Layer IV is defined by a bal-
ance between mean advection and turbulent inertia.

and IV adhere (at least asymptotically) to the traditional inner and
outer scalings respectively. On the other hand, layers II and III ex-
hibit mixed scaling properties. The inner normalized thickness of
layer II grows like the geometric mean of the Reynolds number de-
fined as the ratio of outer to inner length scales (i.e., �

�
δ
�

), while
its velocity increment remains a fixed fraction of U∞, independent
of Reynolds number. Similarly, ∆IIIy

�
�

�
δ
�

, while its velocity
increment is only about 1 � 0uτ, independent of δ

�
. As discussed

in detail by Wei et al. [2], these scaling behaviors differ consider-
ably from the classical view of boundary layer structure, and are
associated with the existence of a third fundamental length scale,� νδ

�
uτ, that is intermediate to ν

�
uτ and δ.
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Table 1: Inner-normalized scaling behaviors of the layer thick-
nesses and velocity increments. Note that the layer IV properties
are asymptotically attained as δ

�
� ∞.

The mean dynamics and scaling behaviors associated with layers II
and III are central and apparently unique to the model proposed be-
low, and thus are worthy of further discussion. Layer II is called the
stress gradient balance layer since the dominant dynamical mech-
anisms are the viscous and Reynolds stress gradient terms on the
right of Eq. 1; underlying their ratio being

�
1 in Fig. 1. Contrary

to the prevalent notion that boundary layer dynamics are inertially
dominated outside the buffer layer (independent of δ

�
), momen-

tum balance data incontrovertibly reveal that an equal competition
between viscous and inertial effects persists to a wall-normal dis-
tance near the peak in the Reynolds stress, Tmax. Consistent with

the mathematical hierarchical structure revealed by Fife et al. [6],
in the model posed below this competition is associated (in a time
mean sense) with the vortical motions forming and evolving from
the near-wall vorticity field. It is significant to note, however, that
the balance in layer II comes about via two nearly equal but opposite
decreasing functions that lose their dominance over mean advection
as layer II transitions into layer III.

The scalings of Table 1 reveal that the layer II and III thicknesses are
coupled such that their velocity increments adhere to outer and inner
scaling respectively. These properties underlie new interpretations
relating to, for example, the nature of the inner/outer interaction
in boundary layers. In this regard it is relevant to note that major
portions of layers II and IV and all of layer III reside within the
bounds of the region of the mean profile that exhibits a logarithmic-
like variation with y

�
. The lower edge of layer II is fixed near the

edge of the viscous sublayer (independent of δ
�

), while the position
of its outer edge extends to increasing y

�
values like

�
δ
�

such that
∆IIU

�
U∞

�
2. (Note that relative to outer scaling the position of

the outer edge of layer II moves “inward” like 1
� �

δ
�

.) Because
of this positioning behavior for layer II, both end points of layer III
vary with δ

�
. Thus, while the layer III thickness exhibits the same

Reynolds number scaling behavior as layer II, its velocity increment
is only � 1uτ owing to the fact that with increasing δ

�
its position is

located at increasing y
�

locations in a region where U
� � log(y

�
).

Physical Model

Elements of a new physical model for the boundary layer are pre-
sented in the schematic of Figure 2. In contrast to the physical pic-
ture promoted by the traditional (sub, buffer, log and wake layer)
view, this model is consistent with the properties of the mean mo-
mentum balance reviewed above. Associated with this are requi-
site nontrivial reinterpretations and modified insights relating to the
description of flow physics. Conversely, it is recognized that any
defensible model should also embrace the numerous independent
empirical observations relating to, for example, boundary layer co-
herent motions. As evidenced below, the model presented in Figure
2 attempts to simultaneously satisfy these constraints.

A particularly prevalent and growing body of research supports
the hypothesis that hairpin-like vortices constitute a basic build-
ing block of wall turbulence, e.g., [7, 8, 9, 10, 11, 12]. Broadly
speaking, near-wall hairpin vortices are seen to form via redistribu-
tion of the intense sublayer vorticity field (mainly composed of ω̃z),
and during their development extend outward. While earlier flow
visualization-based evidence indicated that these motions might ex-
tend from the sublayer to the edge of the boundary layer [9], an
increasing and predominantly more recent body of results indicates
that at some distance from the wall the boundary layer vortical mo-
tions lose connection with their sublayer/near-wall origin.

This “attached” – “detached” eddy decomposition of the vortic-
ity field finds support from visual studies [13, 14, 15, 16], two-
point vorticity correlations [14, 17, 18] and DNS and PIV stud-
ies [19, 12, 20]. Furthermore, the inclusion of detached eddies
has been found to improve coherent motion-based model perfor-
mance [21]. As depicted in Fig. 2, attached eddies are viewed as
predominantly populating layer II, and to a decreasing degree with
increasing y

�
across layer III and into layer IV. Though a specific

geometric form for the detached eddies is not completely estab-
lished, direct measurements of near-wall ω̃z structure, the increas-
ingly three-dimensional nature of the vorticity field with increas-
ing distance from the surface, and data considerations relative to�
∇ �

�
ω
�

0 [22, 23, 16] support the expectation that at some distance
from wall the characteristic coherent vortical motions become spa-
tially localized and topologically form closed loops. Detached ed-



Figure 2: Schematic representation of some of the dynamical at-
tributes of the proposed model for the turbulent boundary layer.
Layer numbers are the same as those identified in Fig. 1.

dies are hypothesized to predominantly populate layer IV, and to a
decreasing degree with decreasing y

�
across layer III and into layer

II. Of course, the simplest form of such an eddy is a vortex ring-like
motion. Falco’s earlier “typical eddy” observations [13, 15] support
the existence of intermediate scale ring-like eddies in both the inner
and outer regions. More recently, direct numerical simulations by
Bake et al. [24] provide compelling evidence for the formation of
vortex rings from the pinch-off of the legs of hairpin vortices dur-
ing the latest stages of transition. Such a process was previously
proposed by Falco as a mechanism for ring-like motion formation,
and was explored numerically by Moin et al. [25]. Regardless of
the exact geometric form of the detached eddies, however, an im-
portant characteristic feature is hypothesized to be that they contain
positive ω̃z, i.e., having sign opposite Ωz [14, 22, 26, 17, 18].

The new insights derived from the properties of the mean momen-
tum balance [2, 6] allow specific attributes to be associated with
the attached/detached eddy structure proposed. For example, under
the proposed model attached eddies form and evolve across layer
II, and thus their dynamical signature is that they produce instan-
taneous contributions to positive

�
∂uv

�
∂y. Similarly, the charac-

teristic eddies of layer IV are detached. Therefore their dynamical
signature is that they produce negative

�
∂uv

�
∂y.

In the context of these dynamical signatures it is useful to examine
the equation, e.g., [27, 28],

� ∂uv
∂y

�
vωz

�
wωy 
 ∂

∂x

�
v2 
 w2

�
u2
�

� (2)

For turbulent channel flow the last term is identically zero, while
for boundary layers this term is small, especially as δ

�
becomes

large [28]. Thus, to a very good approximation, the gradient of the
Reynolds stress is established by the difference of the indicated ve-
locity vorticity correlations. Given this, the interpretation is that in
layer II the attached eddies interact with the velocity field to gener-
ate a net positive sum, and in layer IV the detached eddies generate
a net negative sum. The dominant terms in Eq. 1 indicate that the
dynamics underlying the evolution of attached eddies are character-
ized by a competition between viscous shear forces and turbulent
advection. Similarly, detached eddy dynamics in layer IV are char-
acterized by a competition between mean flow and turbulent advec-
tion. The flow field interactions underlying Eq. 2 in either layer II or
layer IV have recently been shown to be intermediate in scale [29].
Physically, the reason for this is attributable the fact that as δ

�
� ∞

velocity spectra peak at decreasingly low wavenumber, while vor-
ticity spectra peak at increasingly high wavenumber. According to
Eq. 2, however, the velocity and vorticity fields must interact (i.e.,
correlate) over some wavenumber range in order for there to be a

net momentum transport via turbulent inertia.

Discussion

The proposed model creates a new context for describing bound-
ary layer processes. In this regard, three important issues are now
briefly discussed. These concern i) inner/outer interactions, ii) co-
herent motion dynamics, and iii) scaling turbulence statistics. A
more comprehensive discussion these issues in the context of the
proposed model is forth-coming [30].

Given the proposed physical model, a central element of the in-
ner/outer interaction would seem to have association with how the
attached and detached eddies interact, and, in particular, how these
interactions simultaneously accomplish a net outward transport of
vorticity (associated with boundary layer growth) and a net inward
transport of momentum (associated with the surface drag). The pro-
posed model provides a rather clearly defined framework for iden-
tifying where in the layer the inner/outer interaction occurs (as a
function of Reynolds number) and the competing mean dynamical
effects at play. Overall, the velocity increment scalings suggest that
as δ

�
� ∞ a net outcome of the interaction is that the circulation

(per unit length) associated with the outward transport of vorticity
from layer II is asymptotically balanced by the net inward transport
of momentum from layer IV.

Relevant to coherent motion dynamics, important questions would
appear to relate to how the instantaneous dynamics of attached ed-
dies produce the statistical features of layer II, and similarly how
detached eddies produce the negative Reynolds stress gradient of
layer IV. The respective physical interpretations (in the context of
Eq. 2) are that i) the vortical motions in the region inside of Tmax
interact with the velocity field to act as a source term in Eq. 1, and
ii) the vortical motions for y

�
values greater than the position of

Tmax interact with the velocity field to act as a sink term.

Connected to the above instantaneous-to-mean perspectives is the
somewhat converse issue of scaling turbulence quantities using the
properties of the mean flow. That is, given the Reynolds number
dependencies of the mean momentum field described above, such
connections would permit the prediction of turbulence properties
at arbitrary δ

�
. Relative to this, it is worth noting that the scaling

hierarchy revealed by the analysis of Fife et al. [6] provides new
insights. Furthermore, the layer scaling behaviors reflected in Table
1 constitute a broader set of velocity and length scale combinations
than contained in the traditionally employed theory based on the
assumption of a region of inner and outer overlap.

Conclusions

A new framework for interpreting boundary layer dynamics is de-
scribed herein. Notable features of this model include and incorpo-
rate the following.

� The y
�

extent of the dynamical interaction characterized by
a balance between viscous/inertial effects (Layer II) is both
Reynolds number dependent and, in general, much larger than
previously recognized in the traditional layer strucuture as-
cribed to boundary layers.

� Both the y
�

position and extent of the region over which the
inner/outer interaction occurs is Reynolds number dependent.
The inner/outer interaction primarly occurs over a region in
which the terms in the mean momentum equation undergo the
balance breaking and exchange as described by Fife et al. [6].

� The Reynolds stress gradient has opposite dynamical contri-
butions to the mean momentum equation for y

�
positions on



the inside and outside of Tmax respectively.

� To be fully understood, the dynamical layer structure of the
mean momentum balance requires an extended/revised set of
length and velocity information. These provide a broader con-
text for scaling turbulence quantities.
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