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Abstract

We consider the effect of zero-mean suction on the development
of Görtler vortices in the boundary layer flow over a concavely
curved surface. The zero-mean suction is assumed not to af-
fect the basic boundary-layer flow and so can be modelling by
modifying the impermeability condition at the surface to read
v = δcosωt where 0 < δ � 1. The problem is posed in terms
of vortex receptivity and we demonstrate that small amplitude
zero-mean suction with a frequency ω satisfying ω > 2.254G2/5

(where G is the Görtler number) serves to fully stabilise the
most unstable Görtler vortex.

Introduction

The use of boundary layer suction to control the process of tran-
sition to turbulence is one which has a long history in the sci-
entific literature; this is reviewed in Schlichting [14]. Although
the majority of earlier work on suction control has focused upon
flat-plate boundary layers, and consequently on controlling the
growth of Tollmien-Schlichting waves, there have been a num-
ber of studies on the effect of suction on centrifugal instabilities
(that is, Görtler vortices). Görtler vortices arise in the boundary-
layer flow over a concavely curved surface and are particularly
relevant in the design of laminar flow aerofoils. For example,
the laminar flow wing considered by Mangalam et al. [11] had
appreciable regions of concave curvature on the underside of the
airfoil. The introduction of concave curvature then presented
the potential problem of an earlier transition to turbulence due
to the development of a secondary instability on the streamwise
aligned counter-rotating Görtler vortices.

The majority of theoretical work on the effect of suction on
Görtler vortices has focused upon the asymptotic suction pro-
file

u = 1− e−vsy, v =−vs. (1)

Kobayashi [9] and Floryan & Saric [7] showed that suction
serves to stabilise Görtler vortices; the latter work demon-
strating that a larger level of suction is required to sta-
bilise Görtler vortices than is required to stabilise Tollmien-
Schlichting waves. A similar result was reported by Lin &
Hwang [10] in their computational study Görtler vortices on a
heated concave surface. Myose & Blackwelder [12] undertook
a series of experiments using isolated suction holes (placed in
the low-speed region between the counter-rotating Görtler vor-
tices) and were able to demonstrate that this method required
two orders of magnitude less suction to control the breakdown
of Görtler vortices, over a comparable area, when compared to
an asymptotic suction profile approach. However, this study
was concerned with controlling the secondary instability that
occurs in Görtler vortex flows through the modification of the
low-speed flow region and so did not suppress the development
of the Görtler vortices themselves but controlled the onset of
secondary instability.

Park & Huerre [13] also employed an asymptotic suction profile
(given by (1) with vs = 0.5) in their study of the nonlinear de-
velopment and subsequent secondary instability of Görtler vor-
tices. Their work was not concerned with suction control but

was aimed at exploiting the fact that with a base flow given by
(1) all issues regarding non-parallelism in the development of
Görtler vortices could be side-stepped. It was the early work of
Hall [8] that was the first to emphasise the fact that the Görtler
vortex instability is crucially linked to the non-parallel evolu-
tion of the boundary-layer flow. Further recent work on suction
control of Görtler vortices can be found in Balakumar & Hall
[3].

Recently Denier [4] has reconsidered the stability of the asymp-
totic suction profile (1) in order to determine the level of suction
required to fully stabilise the flow to Görtler vortices. By focus-
ing on the most unstable Görtler vortex mode (whose structure
is described in [6], [15]) it can be shown that suction will fully
stabilise the flow when the level of suction, measured by vs in
(1), satisfies vs > 0.3581G1/3 . Here G is the Görtler number,
defined in (3).

In the past few years there has been considerable attention given
to the problem of unsteady suction at the leading edge of an
aerofoil. Here we consider the effect of an unsteady suction
(that is, alternating suction and blowing) on the stability of
Görtler vortices. We will assume that the suction profile has
a zero-mean state; in other words we will assume that the suc-
tion velocity is prescribed at the surface and is proportional to
cosωt.

Formulation

The equations governing the linear evolution of span-wise pe-
riodic disturbances to a boundary layer flowing over a curved
surface are

Ũx +Ṽy + ikW̃ = 0, (2a)

Ũyy− k2Ũ = uŨx +Ũux + vŨy +Ṽ uy, (2b)

Ṽyy− k2Ṽ = P̃y +GχŨu+uṼx +Ũvx + vṼy +Ṽ vy,(2c)

W̃yy− k2W̃ = ikP̃+uW̃x + vW̃y, (2d)

where 2π/k is the spanwise-wavelength of the disturbance, an
over-bar denotes a basic boundary-layer variable, a tilde denotes
a disturbance quantity, x is the streamwise coordinate and y the
usual boundary-layer variable. The precise form for the basic
boundary-layer is relatively unimportant in what follows. We
will simply assume that the boundary layer remains attached -
Görtler vortices in separated flows were described by Denier &
Bassom [5]. In what follows we take (u,v) to be the streamwise
and vertical velocity components within an attached boundary
layer and so governed by Prandtl’s boundary-layer equations

∂u
∂x

+
∂v
∂y

= 0,

u
∂u
∂x

+ v
∂u
∂x

= −
∂p
∂x

+
∂2u

∂y2 ,

where px = ue(x)uex(x) denotes the streamwise pressure gradi-
ent. These must be solved subject to no-slip boundary condi-
tions u = v = 0 on y = 0 and u→ ue as y→ ∞.



The important parameter appearing in (2) is the Görtler number
G which is traditionally defined according to

Gχ = Re1/2gxx (3)

where y = g(x) denotes the position of the wall and thus gxx
is the wall curvature, which is positive if the surface is con-
cavely curved, and Re is the Reynolds number. For boundary-
layer flows over a surface with even a moderate level of curva-
ture the Görtler number is typically large due to the presence
of the Reynolds number factor appearing in (3). Thus most
boundary-layer applications involving Görtler vortices can typ-
ically be described as large Görtler number flows. This fact
allows some considerable simplification of the fully parabolic
system of equations (2) as has been described by Hall [8]. More
importantly, it is the large Görtler number limit the most un-
stable vortex mode occurs (see Denier et al. [6] and Timo-
shin [15] for details). The wavelength of this mode scales as
O(G−1/5) and it is confined to within a viscous layer of thick-
ness O(G−1/5) situated at the wall. Furthermore the streamwise
growth rate has magnitude O(G3/5) and n this regime the max-
imum growth rate of all vortex-like perturbations occurs.

Turning to the question of the physical boundary conditions ap-
propriate to the flow we focus our attention on the problem of
zero-mean suction (alternatively blowing) at the surface. By
zero-mean we take to mean blowing whose time averaged be-
haviour shows no mean component and is therefore assumed
to have no effect upon the mean-boundary layer flow. We will
model this by prescribing the wall-normal perturbation velocity
to be given by

Ṽ =

{

0 if x < x
δF(J(x− x))exp (ikz+ iωt) if x≥ x (4)

where J is a constant that determines the streamwise extent of
the active region of suction/blowing, 2π/ω is the suction fre-
quency and 0 < δ � 1 is a small parameter which sets the
strength of the suction. We are therefore focusing on small am-
plitude perturbations to the basic boundary-layer flow induced
by small amplitude blowing/suction. We have also assumed that
the region of active blowing is spanwise periodic1; this is equiv-
alent to assuming that there is a periodic array of finite suction
slots located at x = x.

In addition to this condition on Ṽ we must also impose the usual
no-slip boundary conditions on the streamwise and spanwise
velocity perturbations

Ũ = W̃ = 0 on y = 0,

and the condition that the perturbation is confined to within the
boundary layer

(Ũ ,Ṽ ,W̃ )→ 0 as y→ ∞.

Vortex receptivity

We focus our attention on the receptivity of the most unsta-
ble Görtler vortex to zero-mean suction. As noted earlier the
most unstable Görtler vortex has a streamwise growth rate of
O(G3/5) and is confined to an O(G−1/5) thick layer located at

1This assumption is not necessary. Indeed, a suction slot with a
finite extent in both the streamwise and spanwise direction can be dealt
with by simply taking the Fourier transform in z. This however unduly
complicates the subsequent analysis and so we choose not to consider
this problem here.

the wall. We therefore introduce a new stretched wall coordi-
nate ϕ = G1/5y (where y is the usual boundary-layer coordi-
nate). Led by the results of Denier et al. [6] and Timoshin [15]
we consider perturbations to the basic flow in the form

(u,v,w, p) = (u,Re−1/2v,0, p)+δ(G−2/5u1,v1,w1,G
1/5 p1)×

exp

(

ikz+G3/5
Z

β(x)dx + iωt

)

,

where δ is the (infinitesimally) small perturbation amplitude of
the zero-mean suction/blowing. In these expansions we have
anticipated that the disturbance to the basic flow is of the same
order of magnitude as the zero-mean suction/blowing velocity
and so is of size O(δ). This fixes the amplitude of the vertical
velocity perturbation term; the relative magnitude of the other
terms is then a simple consequence of balancing terms in the
continuity and momentum equations.

In order to determine the frequency at which the suc-
tion/blowing first affects the stability of the flow we must nec-
essarily balance

∂u
∂t
∼ u

∂u
∂x

. (5)

Within the viscous sub-layer the mean streamwise velocity ex-
pands as

u = µy+ · · · = µG−1/5ϕ+ . . . ,

where µ = u′(x,0) is the wall shear; given our previous com-
ments on the boundary layer remaining attached, µ is taken to
be positive. Taken with the fact that the streamwise growth rate
of the most unstable Görtler vortex is O(G3/5) the balance ex-
pressed by (5) implies that ω = O(G2/5) (or equivalently the
frequency of the blowing/suction must be O(G−2/5)). Thus it
will be the, relatively, low frequency suction (through the peri-
odic pumping) that will affect the stability of the flow.

In order to pose this problem in the form of a flow receptivity
problem we suppose that the suction velocity is given by

v =

{

0 if x < x

F(J̃G3/5(x− x))exp
(

iλG1/5z+ iωt
)

if x≥ x

(6)
where we have set the vortex wavenumber k = λG1/5 thus al-
lowing us to focus upon the wavenumber regime containing the
most unstable Görtler vortex. To simply matters let us define
x̃ = J̃G3/5(x− x) and write

u = u0(x̃,ϕ)+G−1/5u1(x̃,ϕ)+ · · · ,

(χµ2G)−3/5v = v0(x̃,ϕ)+G−1/5v1(x̃,ϕ)+ · · · ,

Setting ω = G2/5ω0 and substituting our expansions into the
governing equation yields, to O(δ), the system of equations (in
canonical form)

(

∂2

∂ϕ2 −
ϕ
λ̃3

∂
∂x̃
−1−

iω̃
λ̃2

)(

∂2

∂ϕ2 −1

)

Ṽ0 = −
ϕŨ0

λ̃2
, (7a)

(

∂2

∂ϕ2 −
ϕ
λ̃3

∂
∂x̃
−1−

iω̃
λ̃2

)

Ũ0 =
Ṽ0

λ̃2
, (7b)

which must be solved subject to the boundary conditions

Ũ0 = Ṽ ′0 = 0, Ṽ0 = F(x̃) on ϕ = 0,

Ũ0,Ṽ0,Ṽ
′
0 → 0 as ϕ→ ∞.

Here λ̃ and ω̃ are the scaled wavenumber and frequency, respec-
tively.
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Figure 1: Plot of the first eigenvalue of system (8) for a variety of values of ω̃. Shown is the (a) real part and (b) imaginary part of σ
versus λ̃.

System (7) is most readily solved by taking the Laplace trans-
form with respect to x. To this end we define

Û0 =

∞
Z

0

e−σx̃Ũ0(ϕ, x̃)dx̃, V̂0 =

∞
Z

0

e−σx̃Ṽ0(ϕ, x̃)dx̃.

and upon taking the Laplace transform of system (7) we obtain
(

∂2

∂ϕ2 −
σϕ
λ̃3
−1−

iω̃
λ̃2

)

Û0 =
V̂0

λ̃2
, (8a)

(

∂2

∂ϕ2 −
σϕ
λ̃3
−1−

iω̃
λ̃2

)(

∂2

∂ϕ2 −1

)

V̂0 = −
ϕÛ0

λ̃3
, (8b)

which must be solved subject to the boundary conditions

Û0 = V̂ ′0 = 0, V̂0 = F̂(σ) on ϕ = 0, (8c)

Û0,V̂0,V̂
′
0 → 0 as ϕ→ ∞, (8d)

where F̂(σ) is the transform of the function F(x̃). As noted by
Denier et al. [6] this system has solutions which possess simple
poles at σ = σ j where σ j is the jth eigenvalue of the homoge-
neous system (8), j = 1,2, . . . . We therefore seek a solution to
(8) in the form

(Û0,V̂0) =
∆ j(U0 j(σ j,ϕ),V0 j(σ j,ϕ))

(σ−σ j)

+ (U1 j(σ j,ϕ),V1 j(σ j,ϕ))+ · · · . (9)

Substitution into (8) shows that U0 j,V0 j are the eigenfunctions
of (8) corresponding to eigenvalue σ = σ j. We will normalise
these functions so that U0 j has a maximum value of unity. At
next order we find that the functions U1 j , V1 j satisfy an inho-
mogeneous form of (8). Such an inhomogeneous equation only
has a solution provided a solvability condition on the inhomo-
geneous terms is satisfied. In our case this solvability condition
serves to determine the receptivity coefficient ∆ j as

∆ j =
λ̃3Q′′′2 (0)

∞
R

0
ϕ

[

Q1U0 j +Q2

(

V ′′0 j−V0 j

)]

dϕ
(10)

where Q1 and Q2 are the adjoint eigenfunctions satisfying the
system

(

∂2

∂ϕ2 −
σϕ
λ̃3
−1−

iω
λ̃2

)

Q1 +
ϕ
λ̃3

Q2 = 0, (11a)

(

∂2

∂ϕ2 −1

)(

∂2

∂ϕ2 −
σϕ
λ̃3
−1−

iω
λ̃2

)

Q2−
1

λ̃2
Q1 = 0, (11b)

subject to the boundary conditions

Q1 = Q2 = Q′2 = 0 on ϕ = 0, (11c)

Q1,Q2,Q
′
2 → 0 as ϕ→ ∞. (11d)

In order to complete the problem we must invert the transformed
velocity field; to do this we must be more precise about the form
of the function F appearing in (6). If we are interested in the ef-
fect of an isolated suction slot we can take F to be a function of
compact support in which case F will not have any singularities
in σr ≥ 0. Then, as discussed above, the only singularities of
(8) in σr ≥ 0 correspond to the simple poles discussed above
the contour of integration for the inverse transform can be cho-
sen parallel to the imaginary axis to the right of σ = ℜ(σ1). The
contour is then closed in the left-hand half plane ℜ(σ) < ℜ(σ1)
and the only contribution to the inverse Laplace transform then
comes from the simple poles at σ = σ j . Thus we obtain

(u0,v0) =
∞

∑
j=1

(U0 j,V0 j)∆ jF̂(σ j)e
σ jx (12)

so that for a given value of λ̃ the effective coupling coefficient
between the isolated (in x) unsteady suction and the vortex field
is ∆ jF̂(σ j).

Results

The eigenvalue problem posed by (8) was solved by first dis-
cretising the system using second order accurate centred dif-
ferences in ϕ. The homogeneous boundary condition Û0 on
ϕ = 0 was replaced with the normalisation condition Û ′

0 = 1
on ϕ = 0. When these boundary conditions are implemented in
the discretised version of (8) an inhomogeneous matrix equa-
tion is obtained which can readily be solved. Newton iteration
is then performed on the eigenvalue ω until the final bound-
ary condition Û0 = 0 on ϕ = 0 is satisfied, to within some pre-
defined tolerance. An identical technique is used to solve the
adjoint system (11); by noting that the adjoint system has the
same eigenvalues as system (8) we have a useful check on the
accuracy of our results.

The eigenvalues of system (8) are presented in figure 1 for a
variety of values of the forcing frequency ω̃. These show similar
trends to those discussed in Bassom & Hall’s [1] work on the
effect of crossflow on Görtler vortices. In particular we note
that for increasing frequency the vortices become stabilised at
some finite value of the scaled wavenumber λ̃. Additionally
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Figure 2: Plot of the magnitude of the receptivity coefficient
|∆1| for the first eigenvalue of system (8) versus wavenumber
λ̃. The asterisk indicates the wavenumber location of the maxi-
mum growth rate (see Fig. 1a).

the magnitude of the largest growth rate ℜ(σ) decreases with
increasing frequency ω̃.

The receptivity coefficient for the leading order eigenmode,
|∆1|, is given in figure 2. In order to interpret these results the
values of the receptivity coefficient must be considered in the
context of the streamwise response of the vortex disturbance
which is given by (12). Thus the streamwise growth of the vor-
tex is determined by the real part of σ. As figure 1 demonstrates
increasing the frequency serves to reduce the growth rate. For
sufficiently high frequencies the flow is completely stabilised,
as is demonstrated by the neutral curve presented in figure 3.
To the left of this curve the flow is unstable (over a finite band
of vortex wavenumbers). The turning point in this curve is high-
lighted and occurs at ω̃≈ 2.2542. Remembering that our analy-
sis has focused upon the most unstable Görtler vortex we can
then conclude that zero-mean suction of a frequency greater
than 2.2542G2/5 will stabilise the flow to Görtler vortices (or
more precisely, promote spanwise periodic disturbances which
decay downstream).

Conclusions

We have shown that zero-mean suction can promote growing
Görtler vortices in the boundary-layer flow over a concavely
curved surface. If the frequency of the zero-mean suction is
suitably high the vortices will decay immediately downstream
of the source of the suction. Thus zero-mean suction provides a
potential mechanism for the suppression of Görtler vortices.
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instability of boundary- layers, AIAA J. 21, (1983), 1635.

[8] Hall, P. The linear development of Görtler vortices in
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