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Abstract

Mesh free methods can be grouped into two approaches. One is
based on field approximations such as moving least square ap-
proximations and radial basis functions (RBF) and the other is
based on kernel approximations such as smoothed particle hy-
drodynamics (SPH). This paper presents an unified approach to
implement the RBF and SPH methods for solving partial differ-
ential equations in general and for solving problems in compu-
tational fluid dynamics in particular.

There are many forms of RBF and SPH. This paper restricts
attention to multiquadric and compactly supported RBFs and
a particular SPH that satisfies certain completeness and repro-
ducing conditions. Completeness and reproducing conditions
enables SPH to incorporate boundary conditions in similar fash-
ions to mesh based methods such as finite element. A number of
numerical examples are presented to demonstrate the effective-
ness of the two mesh free methods. Some remarks with respect
to their computational efficiencies and implementation are also
discussed.

Introduction

Mesh free methods have attracted much attention recently. Two
distinct directions are followed by these methods. One is based
on field approximations such as radial basis functions (RBF),
element free Galerkin and moving least square approximations.
The other is based on kernel approximations such as smoothed
particle hydrodynamics.

The kernel approximations used in the original SPH proposed
by Lucy [15] and Gingold and Monaghan [7] fail to reproduce
linear functions. Various approaches to remedy these inaccura-
cies have been reported in the literature. It has been shown that
the kernel approximations can be corrected so that they repro-
duce linear functions exactly (see, for example, Belytschko et
al. [1]. Other workers, such as Johnson and Beissel [9], Randles
and Libersky [19], and Krongauz and Belytschko [11], devel-
oped corrected derivative methods. Essentially, these methods
replace the standard SPH interpolant with more sophisticated
interpolant that was constructed by imposing the consistency
conditions. Liu et al. [13] showed that the reproducing kernel
provides boundary correction as well as removing the tensile
instability. Chen and Beraun [3], on the other hand, developed
a generalised SPH method (GSPH) by applying the kernel es-
timate into the Taylor series expansion. Their formulation ex-
tends not only the ability of standard SPH to model partial dif-
ferential equations with higher order derivatives but to enforce
boundary conditions directly as well.

In the last decade or so, another group of mesh free methods that
is based on the function approximation by RBFs either globally
or compactly supported was developed to solve partial differen-
tial equations (see, for example, Kansa [10]). RBF interpolation
is required to be exact at the nodes, so one drawback of these
methods is the need to solve the full coefficient matrix arising
from the function approximation. A common approach to im-

prove computational efficiency is to ensure sparsity, either by
using functions of compact support, or by using domain de-
composition (see, for example, Dubal [5]). In this paper, we
applied the approach of SPH to RBF in using the nearest neigh-
bours of a particle for estimating its derivatives. Thus, com-
puter programs implementing the SPH and RBF methods can
share the same structure. They differ only in their different esti-
mates of the derivatives. The aim of this paper is to present the
results of such implementation of RBF, and to compare them
to GSPH. Most applications of standard SPH are to simulate
compressible fluids. The second aim is to study the application
of GSPH to two benchmark incompressible fluid problems for
testing CFD codes. Also unlike standard SPH discretisation,
all the numerical examples are obtained from substituting each
term of the governing equations by their corresponding RBF or
GSPH derivative approximations directly.

Generalised SPH

Applying the kernel approximation to the Taylor series expan-
sion for f (x) in the neighbourhood ofx, Chen and Beraun
[3] derived results that improve the approximation accuracy of
SPH. In 1D, the GSPH approximation of a functionf (x) and
its first two derivatives are given in Equations (1)-(3). Higher
derivatives can easily be derived.
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The same procedure can be followed to derive approximations
for functions in higher dimensions. However, the derivative es-
timates for higher dimensions involve matrix inversion. It is
clear that GSPH is computationally more expensive to use than
conventional SPH. The extra terms in the above approximations
can be interpreted as corrections to the boundary deficiency in
the conventional SPH. The results are equivalent to some of the
results of Liu et al. [13] and Krongauz and Belytschko [11]
obtained from imposing certain completeness and consistency
conditions. The above approximations are algebraically correct
for a function if it is constant, for its first derivative if it is con-
stant or linear, and for its second derivative if it is constant,
linear or quadratic.

It is well appreciated that SPH is closely related to the finite ele-
ment method. The main difference between the two methods is
that the SPH kernel approximation of a function does not satisfy
the Kronecker delta property. It is thus not possible to impose
essential boundary conditions in conventional SPH. The inclu-
sion of f (x) andd f/dx in the above first and second derivative
estimates enable the direct insertion of Dirichlet and Neumann
boundary conditions, if they exist, in the GSPH method.



Radial Basis Functions

The development of RBFs into a mesh free method for solv-
ing partial differential equations arises from the recognition that
a radial basis function interpolant can be smooth and accurate
on any set of nodes in any dimension. The starting point is
that the approximation of a functionf (x) for a set of distinct
pointsxi , i = 1, . . . ,N can be written as a linear combination of
N RBFs.

f (x) =
N

∑
i=1

αiφ(||x−xi ||) (4)

where φ(||x− xi ||) denotes a positive definite RBF. The un-
known coefficientsαi are to be determined from the system of
equations formed byf (x j ), j = 1, . . . ,N. Once they are deter-
mined, them-th spatial derivatives off (x) are approximated by
taking them-th spatial derivatives of the RBFs.

∂m f
∂xm =

N

∑
i=1

αi
∂mφ
∂xm (5)

The application of Equations (4) and (5) provides the frame-
work for the numerical solution of partial differential equations
and their boundary conditions.

There are many RBFs either globally or compactly supported.
An example of a globally supported RBF that is used exten-
sively is multiquadric (MQ):φ(r) = (r2 + c2)1/2, wherer =
||x−xi || andc > 0. It is well known that the shape parameterc
strongly influences the accuracy of MQ approximation. An im-
portant unsolved problem is to find a method to determine the
optimal value ofc2. To improve boundary treatment, methods
using MQ usually have a polynomial of zero degree added to
the right hand side of Equation 4.

The compactly supported RBFs are generally expressed in the
form φ(r) = (1− r)n

+p(r) (Wu [21] and Wendland [20]), and

(1− r)n
+ =

{
(1− r)n 0≤ r < 1,

0 r ≥ 1
(6)

wherep(r) is a prescribed polynomial. By replacingr with r/δ
for δ > 0, the basis function has support on[0,δ]. It is clear
that the valueδ defines the band width of the coefficient matrix.
In general, the smaller the value ofδ, the greater is the number
of zero entries in the coefficient matrix resulting in lower accu-
racy. In the numerical results for compactly supported RBF, the
Wendland function used isφ(r) = (1− r)4(4r +1).

In this paper, we applied the approach of SPH to RBF in that
only neighbouring particles within a given radial distance from
the particle of interest are used in estimating the particle’s
derivatives. This has the advantage of avoiding the inversion of
large coefficient matrix making problems requiring large num-
ber of nodes more amenable to numerical solution. In general,
the larger the supporting region the higher is the accuracy of the
approximation. The need to invert coefficient matrix makes the
method more expensive than the generalised SPH.

Numerical Examples

First, the GSPH and RBF approximations of∂u/∂x of the
function u(x,y) = sin(πr) + cos(2πr) are studied, wherer =√

x2 +y2 +0.1. The L1-norms of error for a range of parti-
cle size and width of the supporting region are first computed
to determine the optimal values ofc2 and δ to use for MQs
RBF (MQRBF) and compactly supported RBF (CSRBF) re-
spectively. Figure 1 compares the errors of GSPH with those

of CSRBF and MQRBF using the optimal values ofc2 andδ
obtained but different supporting regions ranging from2h−5h,
whereh denotes the smoothing length. It shows that the RBF
methods give better accuracy than the generalised SPH at the
expense of more computational effort.
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Figure 1: L1-norm errors for estimating∂u/∂x.

To demonstrate that the GSPH method can impose boundary
conditions directly, the following heat conduction problem is
solved in the domain0 ≤ x ≤ 1, 0 ≤ y ≤ 1, initial condition
T(x,y,0) =−1, Neumann boundary condition∂T(x,1, t)/∂y =
0 at y = 1 and Dirichlet condition at the other boundaries
T(0,y, t) = T(1,y, t) = T(x,0, t) = 1.

∂T
∂t

=
∂2T

∂x2 +
∂2T

∂y2 (7)

whereT denotes temperature andt time. Both RBF and GSPH
give the result shown in Figure 2 and appear identical to the
result obtained by Jeong et al. [8] who implement the boundary
conditions to the conventional SPH in a different way.
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Figure 2: Temperature profiles att = 0.08.

Next, the 3D Burger’s equation is solved using GSPH and
MQRBF and the numerical results are compared with the an-
alytical solution.

∂v
∂t

+v ·∇v−ν∇2v = 0 (8)



wherev andν denote velocity and viscosity respectively. The
solution becomes more shock-like as the viscosity parameter
decreases. Figure 3 compares L1-norm errors for GSPH and
MQRBF for ν = 0.05. The number of particles used is41×
41× 41. In general, MQRBF gives a slightly more accurate
result than GSPH.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 0  1  2  3  4  5  6  7

L1
-N

or
m

Time (s)

GSPH
MQRBF

Figure 3: L1-norm errors for solving 3D Burger’s equation.

To conclude this section, the GSPH method is applied to two
standard CFD test problems - 2D lid-driven flow and natural
convection in a square cavity. For the lid-driven cavity problem,
the following Navier Stokes equation in 2D is solved

∂v
∂t

+v ·∇v+
1
ρ

∇p−ν∇2v = 0 (9)

where p denotes pressure. The boundary conditions arev =
(1,0) ony= 1 andv = (0,0) on the other three sides of the unit
square. For an incompressible fluid, the Navier Stokes equation
is complemented by the incompressibility constraint,∇ ·v = 0.

In general, velocityvn+1 at timetn+1 obtained by solving Equa-
tion (9) does not satisfy the incompressibility constraint. This
constraint on velocity must be satisfied at all times. In this pa-
per, the following steps are iterated until∇ ·v≈ 0 is reached.

1. ∆pn
k =−γ∇ ·vn+1

k

2. ∆vn+1
k = ∆t∇(∆pn

k)

Here,k is the iteration counter and∆ fk = fk+1− fk. Upon con-
vergence, the above procedure gives the new pressurepn+1 and
divergent free velocityvn+1 for time tn+1. The parameterγ
controls the rate of convergence and must satisfy the stability
requirements0≤ γ ≤ (∆x)2/4∆t. The iteration is equivalent to
solving a Poisson equation for the pressure.

Figure 4 shows that the GSPH solutions for Reynolds number
1000 on a129×129grid using 3 different kernels compare well
with the benchmark solutions 1 and 2 of Ghia et al. [6] and
Botella and Peyret [2] respectively. In the figure, W3 denotes
the cubic spline kernel of Monaghan [17], W4 the quartic spline
kernel of Liu et al [14] and W5 the quintic spline kernel of Mor-
ris et al. [18]. For this problem, W4 gives the best result and
W5 the worst result.

For incompressible fluid flow in a differentially heated square
cavity of sideL, the following equations are solved
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Figure 4: Comparison of lid-driven cavity results.

∂v
∂t

+v ·∇v+
1
ρ

∇p−ν∇2v = β(T−Tr )g (10)

∂T
∂t

+v ·∇T = α∇2T (11)

whereα denotes thermal diffusivity,β the coefficient of ther-
mal expansion andg the gravity. The initial conditions are
v(x,y,0) = (0,0) andT(x,y,0) = Tr . The boundary conditions
arev = (0,0) on cavity boundary,T(0,y, t) = Th, T(L,y, t) = Tc,
∂T(x,0, t)/∂y = ∂T(x,L, t)/∂y = 0. Here, Tr , Th and Tc de-
note the reference, hot and cold wall temperatures respectively.
Table 1 shows that the GSPH results compares well with the
benchmark solutions for Prandtl number 0.71 and Rayleigh
numbers104 - 106. In the table, the numbers enclosed by []
and () are the results of Leal et al. [12] and de Vahl Davis [4]
respectively.

ūmax ȳ v̄max x̄
[16.18] [0.823] [19.63] [0.119]

Ra =104 16.18 0.822 19.63 0.119
(16.178) (0.823) (19.617) (0.119)
[34.74] [0.855] [68.62] [0.066]

Ra =105 34.76 0.853 68.64 0.0656
(34.73) (0.855) (68.59) (0.066)
[64.83] [0.850] [220.6] [0.0379]

Ra =106 64.91 0.847 220.72 0.0375
(64.63) (0.850) (219.36) (0.0379)

Table 1: Comparison of natural convection results.



Even for unsteady problems, the pseudo-compressibility formu-
lation may also be used above to enforce the incompressibility
condition provided that some relations between the relevant pa-
rameters hold (Mendez and Velazquez [16]). In this method,
the pseudo-compressibility equation∂p/∂τ =−c∇ ·v is solved
together with equation (9) or equations (10) and (11), wherec
is the pseudo-compressibility coefficient. For Reynolds num-
bers in the range of 100-1000,c values of 100 give accurate
solutions. When steady solutions are sought,c values of 5-10
can be used. The pseudo-compressibility method gives almost
identical results to the above two test problems and is compu-
tationally less expensive than solving the Poisson equation for
pressure.

Conclusions

This paper presents an unified approach to implement the RBF
and SPH methods for numerical computations. The approach
of SPH in using the nearest neighbours within the supporting
region of a particle to estimate its derivatives of a function is
applied to RBF. The size of supporting region depends on the
smoothing kernel used in the case of SPH but is a parameter in
the case of RBF. In the numerical examples considered in this
paper, a supporting region of width3h for RBF gives accurate
results provided that optimal values for the parametersc2 and
δ are used. There are attempts reported in the literature but it
is still an important unsolved problem of how to determine the
optimal value for these parameters.

The numerical examples presented in the last section demon-
strated that GSPH and RBF give accurate results to the prob-
lems considered. Unlike conventional SPH, they have the ad-
vantage of being able to impose boundary conditions directly.
Also, they are just as easy to implement as the conventional
SPH. There is no dimensional difference between 1D, 2D and
3D as far as computer coding for their implementation is con-
cerned. Apart from correcting the boundary deficiency prob-
lem, GSPH is less affected by particle disorder than conven-
tional SPH because of the normalisation term in the denomina-
tor (refer to Equations 1-3).
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