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Abstract

In this paper, an experimental investigation of the tran-
sient behaviour of the flow adjacent to a suddenly heated
vertical wall is described. The experiments confirm that
the primary deviation from one dimensional to two di-
mensional flow at a particular location occurs at the time
at which the fastest travelling wave arising from the per-
turbation caused at startup reaches that location. Fur-
ther, a secondary instability is identified which simulta-
neously occurs along the full length of the boundary layer
and, in some locations along the plate, evidently triggers
a deviation ahead of the arrival of the fastest travelling
wave.

Introduction

Fluid flows that are driven by density differences are an
ubiquitous part of our lives. Flows that range from the
smallest scales of turbulence of a few millimetres to geo-
physical scales of many kilometres arise from differences
in temperature, salinity or some other dissolved quan-
tity which influences the fluid density, or perhaps from a
change of phase of the fluid. The transport of the quan-
tity which influences density is referred to as convection,
and since the convection is itself the result of a gradient
in the quantity, it is usually known as natural or free
convection.

The applications are many; heat transfer in buildings,
industrial processes, atmospheric and other geophysical
flows, and heat exchangers are a few immediately recog-
nizable examples. The variability amongst these flows is
vast, with the widest possible range of length and time
scales, complex geometries, difficult fluids, and a range
of forcing mechanisms. However, much of the impetus
for research in the area has come from a relatively few
areas, including, for example, heat transfer in industrial
processes and especially the role of heat exchangers, and
geophysical flows.

One of the classical flows with particular relvance to the
first of these applications is the seemingly relatively sim-
ple problem of the mass and heat transfer in a rectan-
gular container subjected to a lateral temperature gradi-
ent. Originally posed in the 1950’s as a problem in heat
transfer through double glazed windows (Batchelor [1])
this problem is relevant to many industrial processes in
which the process is somehow encased by a cooling fluid.
In some cases the heat exchanger may be open to a much
larger environment, in which case it is only the flow ad-
jacent to the heated wall which is of relevance. If the
fluid is pumped or somehow otherwise forced to flow the
problem is no longer driven solely by the density gradi-
ent and is therefore no longer solely natural convection.
These applications are not relevant to the present paper.

Even in this seemingly simple configuration, there are
many complications. In may cases, the way in which the
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Layers -The Role of Instabilities

n

ng
sity
STRALIA

erature gradient is applied varies with time, in some
instantaneously, and the transient repsonse of the

is of interest. Further, the flows are not always lam-
and the transition to turbulence and the influence
the transition has on the heat transfer properties is
elevant. The fluids are not always simple, and the
l state of the fluid could be stratified, non stationary
herwise difficult to deal with.

rtheless, significant progress has been made on the
sis of this classical problem. A great deal of lit-
re exists for examination of the steady state flows
ing from this forcing, but it was not until 1980 (Pat-
n and Imberger [2]) that a detailed examination of
tartup flow following the sudden heating and cool-
f the vertical walls was carried out. Since then, a
antial body of knowledge describing various aspects
startup flow and the transition to steady state has

established (see eg. [3] - [14]).

aspect of the flow development which is central to
arly transient behaviour is the development of the
al boundary layers on the heated or cooled walls.
rticular, the mechanism for the transition to two
nsional flow and the time at which that transition
s govern the early properties of the flow. In this
r, the presence of instabilities on the boundary layer
own from experiments to support a theory which
cts the transition time, and to provide an alternative
anism for transition.

ground and Identification of the Role of Instabilities

idealised problem considered here is a rectangular
y with two opposing vertical walls heated and cooled
e same amount respectively. The resulting flow con-
of rising and falling boundary layers on those walls,
g into the central part of the cavity as heated or
d intrusions along the ceiling and floor. These in-
ns interact with the opposing wall boundary layers,
the core region of the cavity and with their source
al boundary layers to ultimately fill the cavity with
d and cooled fluid, leaving at steady state a strat-
interior region bounded by narrow vertical layers
arrow horizontal intrusions. The flow is governed
e aspect ratio of the cavity A, the Rayleigh number
nd the Prandtl number of the fluid Pr, where

A =
h

�
(1)

Ra =
gα∆Th3

νκ
(2)

Pr =
ν

κ
(3)

and � are the height and length of the cavity respec-
, g the acceleration due to gravity, α, ν and κ the



Figure 1: Numerically generated isotherms and a shad-
owgraph image of the cold wall boundary layer and the
cold intrusion at time 43.6 sec. In this case the wall
temperature difference was 16.6◦C. The axis units are m.
The corresponding Rayleigh number is 3.65 × 109. Note
that the isotherm plot is offset to the left.

coefficient of thermal expansion, the kinematic viscosity
and the thermal diffusivity of the fluid respectively and
∆T the temperature difference between each wall and the
core ambient temperature.

Figure 1 shows both a shadowgraph image and a numer-
ically generated set of temperature contours for the flow
from the cold wall at an early time in the development
of the flow. In this case, the cold wall is the vertical line
to the left. A corresponding vertical boundary layer and
hot intrusion will be present on the opposing wall and
the ceiling. The temperature contours show the vertical
boundary layer formed on the wall depicted as closely
packed isotherms parallel to the wall (not easily visible
in this shadowgraph image which was configured to op-
timise the visualisation of the intrusion), and a complex
intrusion flow, with many small structures, particularly
on the nose of the intrusion, visible in both numerical and
observed images. These small structures are of interest,
but are not the focus of this paper. A closer inspection of
the boundary layer however does show the features which
are discussed here.

Thermal Boundary Layer Development

The flow adjacent to the vertical heated and cooled walls
has been shown to be closely described by the flow on a
semi-infinte suddenly heated (or cooled) wall with the ex-
ception of the region near the upper boundary, where the
flow is turned into the core region of the cavity (Patterson
and Armfield [3]). This has been described qualitatively
in the following terms (Siegal [15]). At any fixed position
downstream of the end of the wall (the leading edge) the
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behaves initially as though the plate were doubly
te, and the classical unsteady one-dimensional flow
emperature fields first described by Illingworth [16]
in a more general context, Goldstein and Briggs [17]
ppropriate. At some later time which depends on
istance from the leading edge, the flow becomes two-
nsional and steady, and is described by the solution
by Ostrach [18]. This transition from unsteady

imensional flow to steady two-dimensional flow oc-
ver a non zero time period, and travels downstream

me velocity which is determined by the parameters
e problem. The transition phase, referred to as the
ng edge effect’ (LEE), is characterised by the pres-
of an oscillatory component, the amplitude of which
o determined by the parameters of the problem and
cation, with the oscillations growing in amplitude
increasing downstream position. According to this
iption therefore, a time series of temperature taken
y given point in the boundary layer will initially

the complementary error function growth given
e one-dimensional conduction solution referred to
and given by equation (7) below, developing into a

ition period which will include an oscillatory compo-
followed by an approximately constant value given
e steady state solution given by [18].

e phases of the flow development are clearly shown in
2, which shows a typical temperature time series in
, taken in the heated boundary layer 8.75 cm down-
m from the leading edge, 2.70 mm in from the wall
ith an imposed temperature difference of 1.17◦C.
mbient temperature in this case was 34.24◦C. Also

n in this figure is the theoretical solution for the
imensional case, given by equation (7) below.

0 10 20 30 40 50 60
34.2

34.3

34.4

34.5

34.6

34.7

Time (sec)

T
em

pe
ra

tu
re

 (
 o C

)

A CB

e 2: A typical temperature time series in the bound-
yer; the parameter values for this case are given in
ext. The corresponding one-dimensional solution,
by equation (7), is overlaid. The meaning of the
broken vertical lines marked A, B, and C is given

e text.

rding to the description of the flow development, the
part of the boundary layer flow is described by the
imensional solution for the suddenly heated doubly
te plate, and figure 2 clearly shows that, for times
han approximately 15 s, the two are virtually coin-
t. The deviation of the experimental result from the
imensional solution after that time implies that the
has arrived at this location, supported by the fol-
g oscillatory component which decays into a steady
as predicted. The time taken for the flow near the



boundary to reach steady state is therefore largely con-
trolled by the timing of these events, and an understand-
ing of these processes is therefore of some interest.

Evidently the deviation from the one dimensional solu-
tion at a particular location occurs when a signal from
the leading edge arrives at that location. Both Goldstein
and Briggs [17] and Brown and Riley [19] obtained es-
timates for the arrival times, based on the assumption
that the signal was advected by the main flow. Their
estimates were, respectively,

yp(τ) = max

∫ τ

0

v(x, t)dt, (4)

and

yp(τ) =
∫ τ

0

max[v(x, t)]dt, (5)

where yp is the distance the LEE penetrates in time τ ,
and v(x, t) is the boundary layer velocity given by equa-
tion (6) below.

The results of inverting these expressions to find the
times of arrival at 8.75 cm in the case shown in figure
2 are shown as the vertical lines marked B and C on the
figure. The values predicted are similar, approximately
24 s, but are both considerably later than the observed
deviation, at around 15 s. This result is consistent with
the constant flux experiments described in Gebhart and
Mahajan [12], Joshi and Gebhart [13], and Gebhart et
al. [14], and the isothermal numerical and experimental
results of Schladow [5], Armfield and Patterson [4] and
Schöpf and Patterson [6], all of which showed that the
LEE arrived significantly earlier than the times predicted
by the simple advection theory.

A different estimate of the arrival time of the LEE was
provided by Armfield and Patterson [4]. Their predic-
tion was based on the speed of the fastest of the trav-
elling waves generated on the one-dimensional boundary
layer by the initial perturbation caused by the start up.
This required an analysis of the stability properties of the
boundary layer to calculate the speed of the fastest wave,
and the amplification spectrum to establish the prop-
erties of the following waves. Numerical simulations of
the cavity flow appeared to strongly support these ideas.
Subsequent papers along these lines included theoretical
analyses by Daniels and Patterson [10, 11], numerical in-
vestigations by Brooker and co-workers [8, 9] and a num-
ber of experimental investigations (Schöpf and Patterson
[6], Graham and Patterson [20] and Patterson et al. [21]).

A separate effect was also apparent in the experimental
results of Joshi and Gebhart [13] for the isoflux heating
case. Here, at high heating rates, a deviation from the
one-dimensional solution apparently appeared at all lo-
cations simultaneously, ahead of the passage of the LEE.
The same effect was evident, though not discussed, in
the experimental results for the isothermal case given by
Graham and Patterson [20]. This observation had not
been noted previously in numerical investigations for ei-
ther the isoflux or isothermal heating cases [2, 4, 22, 23].
This suggested that the instability was convective in na-
ture, with the small perturbations inherent in the numer-
ical solution simply not amplifying sufficiently to be vis-
ible before being carried away by the flow. On the other
hand, the natural disturbances necessarily present in an
experiment may be sufficiently large to become visible.
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ker et al. [9] was however able to observe this sec-
ry instability in numerical simulations. In this pa-

numerical simulation of the side heated cavity was
cted to random perturbations in temperature along
ngth of the heated wall for a particular set of param-
alues; after a certain time, the temperature time se-
t the downstream end of the boundary layer showed
nce of the presence of a significant deviation from
ne dimensional solution, well ahead of the arrival
e LEE, similar to the results described above from
iments.

oted, some experimental data [20, 21] also clearly
nstrates the presence of this effect, as shown in
3. The time series from the two lowest placed

istor at least qualitatively show the expected be-
ur, but the time series from the upper two definitely
t, with deviation from the expected one-dimensional
l much earlier than predicted, and an oscillatory be-
ur quite different to that evident at the upstream

perturbed numerical simulations in [9] were com-
with similar experimental data for the same param-
alues and, by adjusting the amplitude of the numer-
erturbations, were shown to match well; by using

t stability analysis these deviations were shown to
so the result of an instability on the boundary layer.
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e 3: Temperature time series in the boundary layer
at the heights shown on the figure, for the same
eter set used in figure 2.

ing Edge Effect

ted above, the speed of the LEE was initially mod-
as though the signal was being carried by the main
in the boundary layer. The penetration distance of
EE was modelled by equations (4) and (5) above
[17] and [19] respectively. In equations (4) and (5),
) is the vetical velocity given by, from the solution
e one dimensional problem,

, t) =
4gβ∆Tt
1 − Pr

[
i2erfc

(
x

2
√
κt

)
− i2erfc

(
x

2
√
νt

)]
.

(6)
orresponding temperature is

TB(x, t) = T0 + ∆T erfc

(
x

2
√
κt

)
, (7)

e, in equations (6) and (7), T0 is the initial tem-



perature, i2erfc(z) is the second integral of the comple-
mentary error function erfc(z) with argument z and the
other variables are given above. The subscript B in equa-
tions (6) and (7) refers to the base flow condition for the
subsequent stability analysis.

The model proposed in [4] was based on the principle
that the fastest travelling wave from the perturbation
introduced at the leading edge by the start up was re-
sponsible for triggering the transition to two dimensional
flow, and therefore was a measure of the arrival of the
leading edge effect. Daniels and Patterson [10] showed
that these waves always travelled at a velocity higher
than the fastest advective velocity in the boundary layer,
which implied that the leading edge signal would arrive
sooner than predicted by boundary layer velocity based
models.

The penetration distance yp(τ) of the LEE at time τ ,
following this model, is then given by

yp(τ) =
∫ τ

0

crmax(t)dt, (8)

where crmax is the maximum phase velocity at time t. To
evaluate these integrals for the parameters given, the sta-
bility properties of the one-dimensional solutions in each
case must first be determined. The formulation and so-
lution of the linear stability analysis has been previously
addressed (see, e.g. [4, 10]) and only a brief description
is given here.

The one-dimensional solutions given by equations (6) and
(7) are referred to as the base flow. To determine the
stability properties of the base flow, it is modified by a
small perturbation of the form

Ψ = ψB + εRe
[
ψ(x)eiα(y−ct̃)

]
(9)

and
Θ = TB + εRe

[
θ(x)eiα(y−ct̃)

]
, (10)

where ε is a small parameter; Re signifies the real part of
the following expression; Ψ and ψ are total and pertur-
bation stream functions respectively, defined in the usual
way; Θ and θ are total and perturbation temperatures
respectively; and the subscript B refers to the base flow
values. Since travelling waves are sought, the wavenum-
ber α is real, and c is complex with real part cr and
imaginary part ci; cr is the wave phase speed, and αci is
the amplification. Here t̃ is the time associated with the
waves; t associated with the base flow is only a parame-
ter in the following stability analysis. This is consistent
with assuming that any variations with respect to the
waves are on a much faster time scale than the varia-
tions associated with the growth of the base flow [10]. In
other words, the stability calculations are carried out at
a particular time as though the base flow velocity and
temperature fields were fixed at that time.

When Ψ and Θ are inserted in the equations of motion,
the base flow terms cancelled, and the result linearised
with respect to ε, a sixth order ordinary differential equa-
tion system for the eigenfunctions ψ and θ, with eigenval-
ues α, cr and ci, arises. The solution of these equations
has been described in [4] and [10] and will not be dis-
cussed further here.

To evaluate the time taken for the leading edge effect to
reach a given position following this model, the maximum
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speed is required as a function of time. Thus a large
er of evaluations of the wave speed spectra are re-
d to allow an integration over time of the maximum
speed. Again, the details of these calculations are
ed here. It is worth noting however the following
res: first, at large times, the wave speed spectrum
respect to wave number is highly peaked, with a
maximum; second, at large times, the maximum
speed is at a wavenumber which is not amplified,
ugh a significant part of the spectrum is amplified;
, as time decreases, the maximum is less well defined
a much flatter distribution; fourth, the eigenvalues
e increasingly difficult to find as time decreases,
may be related to the observation that the ampli-

art of the spectrum is increasingly difficult to locate;
nally, apart from the time near zero, the maximum
velocity is evidently a linear function of time.
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e 4: Maximum phase velocity crmax as a function
e for the experimantal case discussed in the text.

result for the parameter set introduced above is
n in figure 4. As noted, values for crmax became
asingly difficult to find near t = 0, and solutions
not be found for t < 3.1 s. The dependence is how-

clearly linear, with a slope of 0.549 × 10−3 ms−1,
n extrapolation of the data gives that crmax = 0 at
.66 s. It is therefore assumed that the velocity is
for t < 0.66 s giving a simple inversion to calculate
ime required to reach a given y location.

he case shown in figure 2, the time calculated in this
o reach the thermistor location at 8.75 cm is 17.84
wn on figure 2 as the vertical broken line marked
ualitatively at least, this estimate is a very good
ator of the time at which the response deviates from
ne-dimensional solution.

temperature time series results shown in figures 2
3 arose from an experimental investigation of the
omena [21]. The experiments utilised a rig which has
developed for unsteady natural convection experi-
s, and the procedures have been reported widely (see
3, 6, 7]). Briefly, the working fluid is contained be-
two vertical 1.15 mm thick copper plates, with the

r and lower and remaining vertical walls constructed
1.5 cm thick perspex. The copper plates are sepa-
from hot and cold water baths at each end by an air

with the heated and cooled water restrained by re-
ble, pnuematically operated gates. The air gaps are
tained at the working temperature T0, and the hot
old baths at temperatures T0 ±∆T respectively. At
tion of the experiment, the gates are raised simulta-
ly, and the heated and cooled water floods against



the copper plates, providing rapid heating and cooling.

A version of this rig used for investigating the LEE used
only heating on one wall, with the cold wall held at T0.
A schematic of the rig (not to scale) is shown in figure 5.
Full details of the experimental procedures are given in
[21].

Figure 5: The experimental rig used for the LEE exp-
periments; the full cavity rig has cooling on the opposite
side as well. The PVC insert at the bottom of the cold
wall was placed to simulate the leading edge, and is not
present in the full cavity experiments.

In all a total of 14 separate experiments were carried
out over a range of temperature differences from 1.17◦C
to 8.66◦C, corresponding to a range of Rayleigh num-
bers from 3.3 × 108 to 2.4 × 109. In each experiment,
at least four time series were taken at various points
along the plate, at approximately equal distances from
the wall within the thermal boundary layer. The time
series shown in figures 2 and 3 are typical of those taken
near the upstream end of the wall. The time series fur-
ther downstream were often influenced by the secondary
instability described above, and will be discussed later.
This limited LEE analysis to a total of 19 time series.

The time series were all qualitatively similar to that
shown in figure 2. A fitting procedure (described in [21])
was used to determine the observed time of departure
from the one dimensional solution. For the case shown
in figure 2, the departure time was determined to be 15.36
s, considerably shorter than the estimates from equations
(4) and (5). However, the time estimated from equation
(8) of 17.84 sec is considerably closer. As noted, that
value is shown on figure 2 as the vertical dashed line
marked A.

The values of the three estimates (tBR from equation (4),
tGB from equation (5) and tCR from equation (8)) and
the observed value tact for each of the 19 possible time
series is givne in Table 1 below, together with the ratio
tCR
tact

. In the table, yt is the distance from the leading
edge at which the measurement was taken.

Clearly, the estimate tCR is a far superior estimate to
either tGB or tBR. Although some of the estimates are
poor, in general they are within 10%.

The time scale for the arrival of the travelling waves at
a particular location may be obtained by approximating
the stability equations. From those equations, the veloc-
ity scale for the travelling wave velocity is given by, for
Pr > 1

v̂ ∼ vadv

√
Pr, (11)

where vadv is the velocity scale of vertical boundary layer

veloc
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ity given by, from [2] or more directly from equation

vadv ∼ gβ∆T
Pr

t, (12)

o the time scale for the time of arrival at position y
en by

τ ∼
(
y
√
Pr

gβ∆T

) 1
2

. (13)

e 6 shows the arrival times tact plotted against τ
ed in equation (13). Although there is some scatter,
rrival times are approximately a linear function of
d a linear regression through the data gives a slope
7 with R2 = 0.88.

scaling result together with the direct comparison
ble 1 lends support to the conclusions reached by
rical analysis - that the speed at which the LEE
ls along the plate is best given by the speed of the
t travelling wave which results from the perturba-
f the starting one-dimensional boundary layer. The
series also show the anticipated following oscillatory
iour. It is to be expected that the period of these

ations corresponds to the period of the maximally
ified waves travelling on the boundary layer. This is
d the case, although those details are not discussed
(see [21]).

2 4 6 8 10
τ (sec)

e 6: The time of arrival observed in the experiments
or all experiments, plotted against the scaled time
e solid line is the line of best fit.

ndary Instability

secondary instability which forms on the thermal
dary layer downstream of the travelling LEE was
y observed in the experiments of Joshi and Geb-
[13], Graham and Patterson [20] and in more detail
tterson et al. [21], and in the perturbed numerical
s of Brooker et al. [9]. Although this last paper
nstrated the existence of the instability and docu-
ed its characteristics, the relationship to the existing
imental or detailed numerical results was not con-
d.

stability analysis described above was based on the
ption that the time scale for development of the
al boundary layer is long when compared with the
scales associated with the waves travelling on the
dary layer. This means that time is a parameter in
tability equations, which are solved as though the



flow is steady. Brooker et al. [9] noted that in fact there
may be some effect, and developed a form of the stability
equations which were similar to the parabolised stability
equations (PSE) usually applied to slowly spatially vary-
ing flows, but taking account of the slow time variation.
These collapse on to the usual Orr-Sommerfeld equations
when the time varying terms are dropped.

Although there is some influence of the slow time depen-
dence, the effect diminishes after relatively short time
scales. As shown below, it is difficult to identify from the
experimental results the actual time when this effect be-
comes visible and the additional accuracy obtained from
solving the more difficult PSE is not warranted, in this
paper at least. Consequently, the stationary form of the
stability equations is relevant here.

The procedure for solution of the stationary form has
been discussed above. The amplification spectrum for
the case shown in figure 2 is shown in figure 7 below
(Armfield, private communication). By interpolating be-
tween the curves for t = 7 s and t = 8 s, the boundary
layer becomes unstable at t = 7.5 s, at a wave number
α = 150 m −1. Similar spectra could be drawn for the
other experiments, but are not shown here. In figure 7,
the times are after initiation of the heating.

In principle therefore, for a given experiment, the one di-
mensional thermal boundary layer will become unstable
along its full length at the time (and wavenumber) for
which the amplification first becomes positive, denoted
tC . The LEE model of boundary layer development de-
scribed above is therefore modified by the presence of this
additional instability, as follows. Noting that tC is fixed
for a given set of parameter values, at any particular posi-
tion along the layer, for t < tC and t < tCR, the bound-
ary layer will grow following the standard one dimen-
sional form given by equation (7). If tC < tCR, the one
dimensional form will continue, but will be weakly mod-
ified by the perturbation for the period tC < t < tCR.
For t > tCR, the LEE effect has arrived and the fol-
lowing oscillations are present, though these may also
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e 7: The amplification αci (s−1) as a function of
number α (m−1) for the times after initiation of

ng shown on the figure.

odified by the instabilities already present. If, at
en location, tCR < tC , the LEE arrives before the
dary instability occurs and the development is as
ibed as earlier. Note that there will always be some
d for which t < tC , and that for some region close
e upstream end of the wall, tCR < tC . On the
hand, as the downstream position increases, tCR

es increasingly larger than tC . Further, the peak
ification rates for the first 20 s are small (see figure
onsequently, for locations near the upstream end,
xpected that the weak perturbations introduced by
xperiments will have had insufficient time to grow to
cance before the LEE arrives. On the other hand,
ger downstream distances, there is a significant time
Ra Pr yt(cm) tBR(sec) tGB(sec) tact(sec) tCR(sec) tCR
tact

1.89 × 109 5.42 3.45 7.61 7.75 5.42 5.73 1.06
′′ ′′ 8.75 12.14 12.36 7.19 9.12 1.27

1.68 × 109 5.34 3.45 8.10 8.25 6.01 6.05 1.01
′′ ′′ 8.75 12.90 13.15 10.25 9.65 0.94

1.33 × 109 5.27 3.45 9.08 9.25 4.30 6.83 1.59
′′ ′′ 8.75 14.46 14.74 6.43 10.87 1.69

1.47 × 109 5.04 3.45 8.63 8.79 7.48 6.53 0.87
′′ ′′ 8.75 13.75 14.02 9.56 10.39 1.09

4.94 × 108 4.89 3.45 14.91 15.20 11.12 11.20 1.01
′′ ′′ 8.75 23.75 24.21 15.36 17.84 1.16

1.62 × 109 6.40 8.85 13.09 13.34 9.80 9.77 1.00
2.40 × 109 6.18 8.85 10.79 10.99 6.14 7.99 1.30
2.05 × 109 6.19 8.85 11.67 11.89 7.81 8.64 1.11
1.59 × 109 6.25 8.85 13.26 13.50 9.37 9.83 1.05
1.62 × 109 6.26 8.85 13.14 13.80 9.02 9.74 1.08
1.10 × 109 6.51 8.85 15.88 16.30 10.37 11.75 1.13
8.22 × 108 6.59 8.85 18.39 18.94 10.63 13.71 1.29
6.03 × 108 6.67 8.85 21.48 21.89 13.16 16.07 1.22
3.33 × 108 6.76 8.85 28.82 29.37 20.56 21.61 1.05

Table 1: Tabulated values for the observed arrival time and the estimates of arrival time of the LEE for all experiments
for which the secondary instability is not present. The meanings of the estimates are described in the text.



separation between tC and tCR, and there may be signidf-
icant growth of the perturbations before the arrival of the
LEE.

This effect is demonstrated in figure 8. Here, the four
time series from the experiment discussed above are again
shown. In this case, only the first 35 s is shown, for each
time series individually. On each time series figure, the
times for tC and tCR are shown as broken vertical lines,
and the one dimensional solution given by equation (7)
is overlain.

The first panel, for the time series taken from a thermis-
tor located 3.45 cm above the leading edge, shows that
for the relatively short period betwen tC and tCR, there
is virtually no deviation from the one dimensional solu-
tion. Although there is a period for which the secondary
instability is active, evidently the amplification is insuf-
ficient to cause a visible deviation. Once tCR is reached,
the LEE arrives, and the deviation from the LEE be-
comes evident. A similar conclusion may be reached for
the second thermistor, located at y = 8.75 cm. The third
and fourth time series, from thermistors located at 16.65
cm and 20.65 cm however show a significant deviation
from the one dimensional solution almost immediately
tC is reached, with highly amplified distrubances evident
in the time immediately prior to tCR, consistent with the
increased time available for amplification. Time series
from other experiments show similar behaviour,and are
not shown here.
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lusions

times determined by experiment for the arrival of
EE on the vertical heated boundary layer have been
n to be well predicted by the times obtained by in-
ting the maximum phase velocity of the waves gen-
d at the leading edge by the perturbation caused by
tart up of the flow. These results lend strong sup-
to the model of [4] for the transition from one- to
imensional flow occurring at the time given by the
ge of the fastest travelling wave originating at the
g edge.

ond instability on the boundary layer which occurs
taneously along the one dimensional layer has also
identified. At downstream locations, this instability
occur before the arrival of the LEE, and therefore
des an alternative deviation from the one dimen-
l solution. The time series from one particular ex-
ent are shown to demonstrate the effects of this

bility. Although not conclusive, the data indicate
the magnitude of the perturbations increases with
stream position, consistent with the principle that,
the time taken for the LEE to arrive is longer, the
rbations have a longer period to amplify and there-
ecome more easily visible.
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Figure 8: The first 35 s of the time series of each of the four thermistors located in the boundary layer, at the locations
identified on the figures. Also shown are the one dimensional solutions, and the times tC and tCR.
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