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Abstract

This discussion covers some progress in turbulent mixing
stemming from experimental, modeling, and direct-numerical
simulation (DNS) studies. Topics include the mixing transition,
results from DNS studies of the Rayleigh-Taylor instability in
miscible fluids, experimental investigations in transverse jets and
the assumption of isotropy in turbulence and mixing, and
experiments in high-speed shear layers that elucidate some
effects of compressibility on the mixed-fluid field.

Introduction

Turbulence remains a scientific challenge, despite sustained and
inspired contributions especially during the latter half of the 20™
century. Turbulent mixing presents particular difficulties because
while driven by scalar fluxes typically dominated by large-scale
motions, the final, diffusive, molecular-mixing stage occurs at the
smallest spatial and temporal scales of the flow, necessitating a
correct description of the whole spectrum.

Figure 1 Left: Rocket testing in the Los Angeles hills [3], Re > 10°. Right:
LIF measurements of jet-fluid concentration isosurfaces in a turbulent jet
in water [4], Re = 10",

The ratio of the largest-to-smallest scales that need to be
described is a function of the Reynolds number, Re, and Schmidt
number (Sc = v/D) of the flow. Accepting standard scaling [1,2],
we have ApadAmn ~ Re*Sc'?, corresponding to a required
dynamic range proportional to Re’ for gas-phase mixing (Sc = 1)
to describe turbulence (3x% for space + % for time). Liquid-
phase (Sc = 1000) mixing is even more challenging. In view of
this scaling, it is tempting to ask how low Re can be for flow that
is representative of bona fide turbulence.

Considering the Re values of interest, this imposes a daunting
task for any investigation, be it experimental or numerical
simulation, as the dimensionality of the phenomena and the data
required to describe them is very high.

The mixing transition

Turbulent flows exhibit a transition that can be conspicuous, at
outer-scale Reynolds numbers, Res =pU 8/ p = 1-2x10* or a
Taylor Reynolds number of Rep=p v’ Ar/ W = 100, where & is
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an outer-scale length, U the characteristic velocity that drives the
flow, u” the rms velocity, and A; the Taylor microscale. The latter
provides a criterion where an outer-scale Reynolds number is not
appropriate. Where both can be defined, the quoted threshold
values are consistent with the general approximate relation,
Rer = (Reg)". These provide necessary but not sufficient
requirements for this transition; laminar flows, for example, can
be encountered at higher Re’s yet [5].

Figure 2 Transverse jet in a uniform free stream, U;/U.=10.
Concentration field intensity compensated for mixing with x'? for
visualization purposes Top: Re = 1000. Bottom: Re = 10,000 [6].

An explanation or this transition has been proposed in terms of
the need for the existence of inertial-range dynamics, i.e., an
inviscid range of scales. This leads to a criterion for a minimum
Reynolds number, as noted above, in accord with observations

[5].

While this transition was first documented through its effects on
mixing, it is a transition of all aspects of the flow and manifests
itself in a multitude of ways. As can be seen in figure 2, which
illustrates the phenomenon, the qualitative difference between the
pre- and post-mixing-transition flow is considerable and easily
registered through its effects on the probability-density function
of jet-fluid concentration values, for example. Inferences drawn



from pre-transitional flows should be applied with care as such
flows are not necessarily representative of high-Re flows.

Growth and mixing in Rayleigh-Taylor flows

The Rayleigh-Taylor instability (RTI) occurs whenever fluids of
different density are accelerated in a direction opposite that of the
density gradient. If the fluids are miscible, species diffusion and
mixing, that reduce density differences and hence local forcing,
can play a dynamic role.

Recent direct numerical simulations (DNS) of RTI between
miscible flows allowed investigations on the growth and mixing
in Rayleigh-Taylor instability (RTI) flow [7]. Figure 3 plots the
initial perturbation spectra for four numerical simulation runs.
The Navier-Stokes equations, with matched fluid viscosities for
the two fluids, with p,/p; = 3, were augmented by a species-
conservation equation for binary Fickian diffusion. The runs
were executed on the Lawrence Livermore Pacific-Blue ASCI
machines [7,8]. Cases A, B, and C were solved on a 256*x1024
grid. Case D was solved on a 51222048 grid, ran on 1024
processors, and required a year of wall-clock time.

The linear stability analysis dispersion relation, o(k), derives
from the theory by Duff et al. [9], T = (L/dg)"? with L the
transverse extent of the RTI cell,

A=(p—p1) / (p2+p1) = 0.5,

the Atwood number, and g the acceleration magnitude.
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Figure 3 RTI initial perturbation spectra and linear-stability analysis
dispersion curves [7,8].

Initial error-function mole-fraction profiles were perturbed by
displacing the intermediate isosurface, X=1/2, nominally at
z=0, by an amount {(x,y), in units of the initial profile scaling
length. The A, B, and C simulations were performed with
matched initial perturbation amplitudes, each with a different
initial {(x,y) perturbation spectrum (figure 3), but otherwise
identical in every other respect.' Case D was run with the same
boundary conditions, but a lower initial perturbation amplitude,
as illustrated below. It was designed to answer whether the A, B,
and C results were an artifact of a limited spatial dynamic range
and to attain a higher final Reynolds number.

Models of Rayleigh-Taylor instability mixing zone have it
growing quadratically in time, following an initial, linear-

YA scaling error for ¢ led to an incorrect plot of the linear-stability-
analysis dispersion relation in [7]. It is corrected here and in [8].
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instability evolution. For a constant acceleration, g, this yields a
vertical extent of the RTI mixing zone given by,

h=o0dgt? )

where o is taken as an empirical constant, with values in the
range, 0.1 <o < 0.7 [10].

Figure 4 depicts the intermediate mole-fraction isosurface
(X=1/2), visualized from the results for Case C [7].

Figure 4 Case C intermediate isosurface, X=1/2 (green), for t/t = 0.0,
3.44, and 4.63 [7]. Red: pure heavy fluid. Blue: pure light fluid.

Figure 5 plots the computed growth for the four cases. 4 is
defined as the difference in heights, z, where the horizontally
averaged mole fraction is given by X = 0.99, and 0.01 [7].
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Figure 5 RTI mixing-zone growth.

As can be seen, initial RTI mixed-fluid growth is well-described
by diffusion, i.e., o< 2. A faster-growth subsequent stage occurs
at a different time for each of the three cases, reflecting
differences in initial seeding, with breakout times from the
diffusive-growth regime in accord with linear-stability theory [8].
While late-time growth for Case C is well represented by a
quadratic, Cases A, B, and D exhibit growth with a different time
dependence, placing the validity of the empirical model (2) and
the hope that a universal value for o may exist in question.
Differences in growth between the four cases are large, indicating
a high sensitivity to initial conditions.

Even greater differences between the three cases are found in
mixing, as measured by the amount of chemical product that
would be formed from a stoichiometric chemical reaction
between the two miscible fluids being mixed [7]. See figure 6.
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Figure 6 Simulated chemical-product fraction in RTI zone [7].

Differences between the four cases persist to the end of the
simulations, to moderate Reynolds numbers,
Bh}i 3)

Re, =—,

where p = (p;+p2) / 2, with (Rep)ma = 3700 for Case C and 5500

for Case D. While these values are below the anticipated mixing
transition, the flow evolved over a significant multiple of the
initial transverse extent, i.e., Ana / Finiar > 10°. Other measures
also reflect high-Re behavior. The chemical-product fraction
tends to 8,/ 4 =0.34 [7], a value very close to that in high-Re,
gas-phase, chemically reacting shear layers [11]. Taylor
microscales computed in the original interface plane (z=0) are
non-isotropic, with values along the vertical direction larger than
in the horizontal plane, but straddling values measured along the
centerline of high-Re turbulent jets [7].

Are scalar fields isotropic at small scales?

Turbulence theories often assume that statistical quantities may
be approximated as isotropic, yielding a considerable reduction in
the tensor components that need to be modeled. This also stems
from attention paid to grid turbulence, many aspects of which are
(nearly) isotropic, and the fact that most measurements to date
have been point measurements. Spatial data are estimated with
the aid of Taylor’s frozen-turbulence hypothesis, with direct
spatial or multi-dimensional information difficult to extract, or
infer. The assumption is often that fluxes will be supported by
large-scale anisotropy, while small scales may be approximated
as isotropic. Yet, an isotropic field cannot support fluxes and,
indeed, “...experimental evidence shows that structure functions
and the derivative skewness of the scalar field do not follow
predictions from isotropy at inertial and dissipative scales, in the
presence of a mean scalar gradient.” [12 and references therein]

These issues were further investigated in experiments on
transverse jets [6]. Transverse jets are important in a variety of
turbulent mixing and combustion contexts. They are relied upon
to disperse pollutants from stacks in the atmosphere, sometimes
used for effluent discharge in the ocean, and are a candidate fuel-
injection configuration for high-speed air-breathing propulsion
devices, such as SCRAMIETSs, for example.

In the transverse-jet experiments, cuts in planes perpendicular to
the streamwise direction permitted spatial scalar spectra and
other scalar-field statistics to be compiled, at a fixed x / d; station.
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Figure 7 Jet -fluid concentration for a transverse jet in a uniform
freestream (cf. figure 2), atx / d; = 50. Top: Re = 1000. Bottom:
Re =10,000 [6].

Measurements were in the mid-span, streamwise plane (figure 2),
and the flow-transverse plane (figure 7).
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Figure 8 Two-dimensional power spectra of the scalar field of the
transverse jet at x /dj=150. The wavenumber, £, is normalized by the
local horizontal spatial extent, &,. Contour plots in log;o increments. Top:
Re =1000. Bottom: Re = 10,000 [6].

Figure 8 plots two-dimensional (spatial) scalar power spectra for
a transverse jet, downstream of the injection station, at x / d; = 50,



computed as an ensemble average of spatial spectra computed
from a succession of frames, as in figure 7, for jet Reynolds
numbers, Re=1000 and 10,000 (jet-to-freestream speed ratio,
Vi = Ui/ U, = 10). Spatial-spectra contours are seen to be closer
to circular (isotropic) for low wavenumbers, becoming
increasingly elliptical at high wavenumbers. The reason, in this
case, is traceable to the strain-rate field imposed on the small
scales by the large-scale, streamwise vortices that dominate the
far-field flow of transverse jets, owing to the large-scale
streamwise vortices induced by the transverse injection. At least
for this flow, the opposite behavior to the usual expectation can
occur, i.e., increasing anisotropy with increasing wavenumber.

This is illustrated in figure 9, which depicts a space-time image
of a scalar field isosurface, ie., ¢ (y,z t;x=50d;), compiled
from a sequence of transverse cuts, recorded at a sufficiently high
framing rate to meet the temporal Nyquist criterion for
reconstructing the three-dimensional slice of the ¢ (x, y, z, f) data.

Figure 9 Three-dimensional, space-time visualization of an outer
isosurface of jet-fluid concentration for a Re = 1000, V; = 10, transverse
jet, at x/d; = 50. Time runs along the axis of the vortices. Visualization
was computed in collaboration with S. Lombeyda of Caltech’s CACR [6].

At this Reynolds number (Re=1000), a small vortex is also
evident, which is responsible for the left-right asymmetry in the
flow and the slight tilt in the low-Re spatial spectrum (figure 8,
top). At higher Reynolds numbers, only two counter-rotating
(“kidney”) vortices appear, generating a spanwise symmetric
mean flow about the streamwise plane of symmetry that contains
the jet nozzle, and untilted elliptical contours of the spatial
spectrum (figure 8, bottom).

Compressibility effects

An emerging issue in turbulence is compressibility, or Mach
number effects on the structure and dynamics of the flow. These
can be scaled in terms of the so-called turbulence Mach number,
M, =u'/ a, where u’ is the rms velocity. Little guidance in this
regime derives from work to date, with scant experimental data to
steer theoretical and modeling efforts. As both Re and M, scale
linearly with velocity magnitude, high-M; flows are also,
typically, high-Re flows, placing them further out of reach of
direct numerical simulation.
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Weak Re effects in mixing were documented in experiments on
high-Re shear layers [11,13,14]. These are illustrated in figure 10
that plots the normalized chemical-product thickness, 8,/ 8 [14].
It is clear that this phenomenon is complex and may not be
representable by a single model, given the complex dependence
of the flow on initial/inflow conditions [17].
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Figure 10 Shear-layer chemical product thickness vs. Re [14]. Dashed
line: Dimotakis model [15]. Dotted line: Broadwell, Breidenthal, and

Mungal model [16]. Initial splitter-plate boundary layers are estimated to
be laminar for Re < 10° and turbulent for Re > 3x10°, or so [14, 17].

Figure 11 Rayleigh-scattering images of high-Re shear layers [18]. Top:
Low-compressibility flow (M. = 0.15), U, = 200 m/s [N,], U, = 100 m/s

[C,H4]. Bottom: High-compressibility flow (M=0.96), U, =
[He], U, = 100 m/s [CoHy].

1150 m/s



Experiments designed to discriminate between Reynolds number
from Mach number effects indicate that these effects are distinct
and responsible for different mixing regimes [13].  This
conclusion is also corroborated by laser Rayleigh-scattering
measurements in high-speed shear layers [18]. Two images from
those experiments are reproduced in figure 11. Compressibility
is here quantified in terms of the (total) convective Mach number
[19, 20],
M = U1 _Uz

¢ oata,’
where U, and U, are the high- and low-speed freestream
velocities, and @; and a, the high- and low-speed freestream
speeds of sound.

“4)

Figure 11, top, is a low-compressibility flow, M. = 0.15, with N,
the high-speed freestream gas and C,H, (ethylene) the low-speed
freestream gas. These are density-matched but have different
Rayleigh-scattering cross sections, permitting molecular-
scattering images of thin slices to be recorded. The image on the
bottom is from a supersonic high-speed freestream shear layer,
with M, =0.96, helium as the high-speed freestream gas, and
C,H, the low-speed freestream gas.

The values quoted for M, are useful for scaling and comparison
purposes. Better estimates are based on the actual convection
velocity of the large-scale turbulent structures, U, and are
defined with respect to each of the free streams, i.e. [21],
U, -U, U,-U,

cl T al > MCZ - a2 .
By way of example, at the supersonic flow conditions in the
bottom image of figure 11, the large-scale-structure convection
velocity is close to that of the high-speed freestream speed [11]
and yields an estimate of M, = 2.4, in accord with the inclination
angle of the (weak) oblique waves emanating from the turbulent
zone into the low-speed freestream [18]. Since the rms velocity
fluctuation, u’, scales with the shear velocity, AU; = |U, — U, the
turbulence Mach number, M,, for this flow scales with (M;)max,
the higher of the two convective Mach numbers, with values that
can be estimated to be in the range, M, / (M¢))max = 0.1 — 0.3, with
the lower values expected with increasing Mach number.

M (%)

At low compressibility (figure 11, top), well-defined interfaces
can be seen to mark the boundary between almost homogenized
mixed fluid and unmixed freestream fluid. For high-
compressibility flow (figure 11, bottom), mixed-fluid
compositions are not as uniform. Oblique shocks, generated by
supersonic relative convection speeds of the turbulent structures
(M.’s comparable to, or greater than, unity), interact with the
turbulence, generate baroclinic vorticity, and provide additional
mixing and kinetic energy dissipation mechanisms. Not much is
known about mixing in this flow regime, with experiment and
theory indicating that while shear-layer growth is lower than for
incompressible shear layers, the mixed-fluid fraction within the
turbulent shear-layer region is higher [17, 22].

Modeling and simulation

Accepting the mixing transition as a common characteristic of
most turbulent flows highlights the need for detailed, multi-
dimensional measurements and direct numerical simulations to
help guide theory and modeling for post-mixing-transition
turbulent flows. The modal dimensionality of turbulence dictated
by the minimum Reynolds number required for bona fide
turbulence makes it unrealistic to expect that direct solutions of
the Navier-Stokes equations can be relied upon to probe fully
developed turbulence, and has been amply noted in the literature.
It is also illustrated here by the computational effort required for
the RTI Case D run. At least for flows with large density
variations, DNS with Re;, > 10* must wait for the next generation
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of computing machinery. Similar challenges face the
experimentalist, if fully resolved data are to be provided to guide
model development.

On the positive side, experimental evidence suggests that flow
Reynolds number is a strong parameter in pre-mixing-transition
regimes, but only a weak parameter in fully developed
turbulence, at least away from walls. In that regime, judicious
Sub-Grid Scale (SGS) models may have a hope of capturing
unresolved dynamics by augmenting Large Scale Eddy
Simulations (LES). Nevertheless, one should bear in mind that
the goal is to represent the notional zoomed inset in figure 1,
right, given a coarsely resolved representation that has hopefully
correctly captured the large-scale features of the flow represented
in figure 1, left.

Turbulent mixing, which is dominated by small-scale behavior,
presents a particular challenge. In many situations where the
issue is the turbulent mixing itself, special experimental
techniques, or theoretical and computational models must be
employed to address it. In others, such as Rayleigh-Taylor
instability that is driven by density inhomogeneities, a correct
description of mixing is required to capture even the growth of
the RTI mixing zone. Significant differences are reported
depending on the details of explicit and implicit modeling and
numerics. As Glimm et al. [23] note, “differences in numerical
dissipation effects (mass diffusion and viscosity) due to
algorithmic differences and differences in simulation duration are
the dominant factors that produce such different results.”

Particularly encouraging are recent SGS proposals by Pullin ef al.
[24-27] for incompressible, uniform-density turbulent flow.
These assume that the dynamics below resolved spatial scales
and associated sub-grid stresses are well represented by stretched
spiral vortices of the type proposed by Lundgren [28]. These
vortices are solutions of the N-S equations and generate a —5/3
velocity spectrum. These SGS models do not assume isotropy
and exhibit a mixing transition at Rer = 100 [26], even though
there is nothing in the structure of the SGS model to have
anticipated this. More recently, they were successfully extended
to capture the scalar spectrum behavior for scalar fields with
Sc>1[27].

Modeling compressible, non-uniform flows, especially turbulent
flows with shocks, must be regarded as a current and challenging
research topic. Many attempts to date have relied on ad hoc
closures of the Euler equations with a variety of explicit or
implicit numerical dissipation schemes. While many gasdynamic
phenomena, especially ones dealing with shock propagation in
uniform media, can be captured by such methods, strong shock-
turbulence interactions and simulations represent as yet
unchartered territory.

Conclusions

Recent experimental and numerical-simulation results have
elucidated issues in turbulent mixing and also point to significant
challenges yet to be addressed. New and developing
experimental techniques that can record multi-dimensional
spatio-temporal data, as well as the inexorable progress of direct-
numerical simulations are guiding a new level of understanding
and modeling, and can be expected to lead to further progress in
the offing.
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