
14th Australasian Fluid Mechanics Conference 
Adelaide University, Adelaide, Australia 
10-14 December 2001 
 

Near-wall Coherent Structure Generation 
 

Wade Schoppa and Fazl
Department of Mechanical E

University of Houston, Houston, TX
 

 
Abstract  
We present new insight into the generation of streamwise vortices 
near the wall, and an associated drag reduction strategy.  Growth of 
x-dependent spanwise velocity disturbances w(x) is shown to occur 
via two mechanisms: (i) linear transient growth, which dominates 
early-time evolution, and (ii) linear normal-mode instability, 
dominant asymptotically at late time (for frozen base flow streaks).  
Approximately 25% of streaks extracted from near-wall turbulence 
are shown to be strong enough for linear instability (above a critical 
vortex line lift angle).  However, due to viscous cross-diffusion of 
streak normal vorticity ωy, normal mode growth ceases after a 
factor of two energy growth.  In contrast, the linear transient 
disturbance produces a 20-fold amplification, due to its rapid, 
early-time growth before significant viscous streak decay.  Thus, 
linear transient growth of w(x) is revealed as a new, apparently 
dominant, generation mechanism of x-dependent turbulent energy 
near the wall. Combined transient growth/instability of lifted, 
vortex-free low-speed streaks (above the instability cutoff of streak 
strength) is shown to generate new streamwise vortices, which 
dominate near-wall turbulence phenomena. Significantly, the 3D 
features of the (instantaneous) vortices generated by 
transient/instability growth agree well with the coherent structures 
educed (i.e. ensemble-averaged) from fully turbulent flow, 
suggesting the prevalence of this mechanism.  Results suggest 
promising new strategies for drag and heat transfer control, 
involving large-scale (hence more durable) actuators, without 
requiring wall sensors or control logic. 
 
1.  Introduction  
There is an evolving consensus that the increased drag and heat 
transfer in turbulent boundary layers are due to near-wall vortical 
coherent structures (CS).  Viable control of near-wall turbulence, 
as yet largely unrealized in practice, has the potential for enormous 
savings in fuel costs via drag reduction for aircraft, marine transport 
vehicles, pipelines, and heat transfer management for high-
temperature gas turbines.  Although a barrage of drag reduction 
strategies have been studied extensively, their engineering 
application has remained scarce.  A lack of successful 
implementation of boundary layer control can generally be traced to 
two key difficulties: (i) tiny spatial scales of near-wall streamwise 
CS (~0.1 mm) and (ii) incomplete understanding of the dynamics of 
CS initiation and evolution. 
To address these inherent obstacles, we propose here new control 
approaches which explicitly utilize recent advances in the 
understanding of near-wall turbulence physics.  The prominence of 
streamwise vortical coherent structures (CS) in near-wall turbulence 
is now well accepted (e.g. see [11]), as is their critical role in the 
elevated drag in turbulent boundary layers.  The transport 
enhancing effect of near-wall CS is well understood.  These CS 
sweep near-wall fluid toward the wall on one CS flank and eject it 
away from the wall on the other.  Drag and heat transfer are 
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nced by the wallward motion, which steepens the wall 
ients of streamwise velocity U. Note that the gradient reduction 
he outward motion side of vortices is relatively smaller, 
ting in enhancement of mean wallward momentum transfer due 
ar-wall vortices. 
most logical approach to CS-based reduction of drag and heat 
fer is to simply prevent vortex regeneration in the first place 
contrast to many approaches which counteract the wall 
action of fully developed CS). Although it has long been 
thesized that a major source of turbulence production near the 
is the instability of inflectional low-speed streaks (e.g. [2, 10, 
 the issue remains unresolved.  In particular, it is currently 
own whether streaks of sufficient strength for instability 
lly occur in fully-developed near-wall turbulence.  
tionally, the influence on streak instability growth of viscous 
ilation of streak normal vorticity is yet to be quantified, as is 
ossibility of linear transient growth.  Finally, the relationship 
een streak disturbance growth and the formation mechanism of 
itudinal vortices is poorly understood, which has prevented the 
lopment of streak disturbance control strategies aimed at drag 
ction (e.g. [3,4]). 
ate, we have demonstrated [13] that the CS [5,6] extracted 
 fully developed near-wall turbulence can be directly created 
D inviscid instability of lifted streaks near a single wall 
ted by previous “parent” vortices, no longer present), the 
ration mechanism being akin to that of streamwise vortices in 
shear layers by oblique mode instability [12]. This new-found 
iation of near-wall CS formation with instability mechanisms 
s up promising avenues for explaining and especially 
olling near-wall turbulence, noting the documented success of 
rimental instability control in both free- and wall-bounded 
r flows (e.g. see [3]). 
suppress CS via control of streak disturbance growth 
onsible for CS formation), there are two possibilities: either (i) 
teract existing perturbations which would otherwise generate 
CS, or (ii) stabilize the base flow streaks.  Pursuit of (i) would 
ssitate instantaneous and small-scale detection and control, 
h would suffer from the durability problems faced by 
oscale active wall elements.  Approach (ii) is very attractive 
 the standpoint of large-scale (hence more robust) control, 
ein numerous (perhaps thousands of) streaks may be stabilized 
her – hence suppressing new CS formation over an extended 
al domain – with a single robust actuator, involving time-
pendent control and no flow sensing [15]. 
primary objective of this paper is to summarize our latest 
ngs regarding streak disturbance growth, vortex generation, 
associated drag reduction strategies.  We first demonstrate the 
rlying mechanism of CS formation, driven by nonlinear 
tion of 3D disturbances of lifted low-speed streaks, 

nguishing between linear (normal-mode) instability and linear 
ient growth.   
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2.  Computational Approach  
In the following, we address streak instability-induced vortex 
generation and its control using direct numerical simulations of the 
Navier-Stokes equations.  Periodic boundary conditions are used in 
x and z, and the no-slip condition is applied on the two walls 
normal to y; see Kim et al. [9] for the simulation algorithm details.  
To better isolate instability and the subsequent vortex formation, we 
use the minimum outer Reynolds number Re=Uch/ν=2000 (Uc is 
the centerline velocity of the 2h wide channel for a laminar flow 
with the same volume flowrate) and the minimum domain sizes in x 
and z for sustained channel flow turbulence – the so-called 
“minimal flow unit” of Jimenez & Moin [7].  For the simulations of 
isolated vortex regeneration, a constant volume flux is maintained, 
and 32x129x32 grid points are used in x, y, and z respectively.  The 
control simulations are initialized with full-domain channel flow 
turbulence at Re=1800 and 3200 [9], with 48x65x48 and 
192x129x192 dealiased Fourier modes respectively.  Actuation is 
represented by an applied control flow − either maintained at a 
constant amplitude or allowed to freely evolve − superimposed onto 
the turbulence. 
 
 
 
 
 
 
 
 
 
Figure 1.  Lifted low-speed streaks (black) illustrated by u’<0 at y+=20 and 
streamwise vortices (grey) indicated by the Jeong & Hussain [5] vortex 
definition in the region 0<y+<60. 
 
3.  Disturbance Growth of Near-Wall Streaks    
The two most prominent structural features of near-wall turbulence 
are illustrated in figure 1: (i) "streaks" of low momentum fluid 
which has been lifted into the buffer region, and (ii) elongated 
longitudinal vortices, illustrated by the Jeong & Hussain [5] vortex 
definition.  It is now well-accepted that the streaks are generated by 
the lifting of low-speed fluid near the wall by the normal velocity 
induced by streamwise vortices; this is consistent with the close 
proximity of streaks to streamwise vortices in figure 1.   
3.1  Linear Instability  
To evaluate the role of streak instability in vortex generation, we 
first consider three-dimensional disturbances of a class of two-
dimensional base flows, representing the range of low-speed streak 
strengths (i.e. magnitude of ωy

+ flanking streak, defined later as θ20) 
observed in fully-developed near-wall turbulence.  To isolate the 
three-dimensional dynamics of lifted streaks, we analyze a z-
periodic row of parallel (x-independent) low-speed streaks, initially 
containing no vortices or ωx whatsoever (i.e. U(y,z) only).  
Additionally, the streaks are localized to a single wall, to prevent 
the second wall (far removed in z) from strongly influencing the 
essential near-wall dynamics, such influence being minimal in 
channel and plane Couette flows at sufficiently high Re.  Note that 
this class of base flows is inviscidly steady (for a constant volume 
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 as required for stability analysis, and is qualitatively 
istent with near-wall streaks observed both in minimal (e.g. see 
]) and full-domain (e.g. see [11]) turbulent flow.  
 representation of vortex-free, lifted low-speed streaks of 
ble strength, we consider a base flow family of the form 

U(y,z)=U0(y)+(∆u/2)cos(βsz) g(y),  
V=W=0 ,                                     (1) 

e U0(y) is the turbulent mean velocity profile and g(y) is an 
itude function which satisfies the no-slip condition at y=0 and 
izes the streaks’ velocity defect to a single near-wall region 

y+<60). A function satisfying these requirements is 
y·exp(-σy2), normalized to unity and with σ specified such 
the maximum streak vorticity ωy|max=βs∆u/2 and normal 
lation per unit length ∆u occur in the range y+=20-30, 
istent with lifted streaks. 
illustrated in figure 2b for a moderately strong streak 
ulation specified with ∆u in (1)), the base flow (1) closely 

bles lifted low speed streaks prominent both in minimal 
nel turbulence (figure 2a) and in virtually any (y,z) cross-
on of full-domain turbulence (e.g. see Kim et al. 1987).  In 
rdance with (1), all streak base flows considered here are even-

etric about z=0, i.e. U(y,z)=U(y,−z).   

e 2.  Lifted low-speed streak in near-wall turbulence, illustrated by (a) 
ical cross-stream distribution of U, approximated by (b) the analytical 
flow (1) used for stability analysis.  The bold contour shown in (a) is 
.55Uc contour. 

illustrative purposes, it is useful to represent the “strength” of 
 streaks in terms of the maximum inclination angle θ of vortex 
 on the streak flank, given locally by θ=tan-1(|ωy|/|ωz|).  In this 
 the strength of the base flow streaks (1) may be characterized 
eniently as the maximum vortex line lift angle, e.g. defined at 
0 as θ20=tan-1[ωy|max/(dU0/dy(y+=20))] with ωy|max=βs∆u/2.  For 
ows considered here, the streak spanwise wavenumber βs in (1) 
osen as 2π/βs

+=100, corresponding to a 100 wall unit spanwise 
ing of adjacent low-speed streaks.   
ccordance with Floquet theory for the z-periodic base flows 
sented in (1), we consider temporal disturbances (denoted by 
es) of the form 
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e the streamwise α and spanwise wavenumber β are real, and 
eigenvalues σ are generally complex.  The tilded complex 
functions are periodic in z with the streak spanwise 
number βs, and the velocity eigenfunctions vanish at the upper 
ower walls (y=0,2h). 
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To quantify possible linear instability of streaks characteristic of 
fully-developed near-wall turbulence, we first discuss three-
dimensional solutions of the stability equations for the class of 
streaks represented by the base flow (1).  Realizable characteristics 
of streaks in near-wall turbulence are then obtained via a streak 
eduction procedure, permitting a statistical evaluation of these 
streaks’ degree of instability. 
We analyze the instability of the streak flow (1) using direct 
numerical simulations of the Navier-Stokes equations, initialized 
with effectively infinitesimal disturbances of the form  

w(x,y)=ε sin(αx)y exp(-σy2),                          (3)                        
where ε is the (linear) disturbance amplitude and σ is a normal 
decay parameter which localizes the perturbation to the near-wall 
region (y+<60).  Provided that an arbitrary perturbation such as (3) 
has a non-zero projection onto the instability mode of interest, the 
disturbance will naturally evolve to this eigenmode.  Lock-on of the 
simulation to a given instability mode is signaled by sustained 
exponential growth of E1n(t) (with n≠0), the volume-integrated 
energy in all Fourier modes with an x-wavenumber of α.  
As indicated in figure 3, a moderately strong streak with 
ωy

+|max=0.35 (streak lift angle θ20=56°) and 2π/βs
+=100 (figure 2b) 

is indeed linearly unstable, with a maximum growth rate of 
approximately σ+=0.012 (i.e. doubling of three-dimensional energy 
in 29 wall time units).  Interestingly, the maximal growth rate 
occurs for a streamwise wavelength of approximately 300 wall 
units, closely corresponding to the minimum x-wavelength required 
for turbulence sustenance [7] at Re=2000 (Lx

+=290). Note that the 
400 wall unit streamwise extent of a symmetric pair of educed near-
wall coherent structures [6] also exhibits a nearly maximal streak 
instability growth rate.  Collectively, these results indicate that the 
characteristic streamwise wavelength of near-wall structures (300-
400 wall units) is consistent with a predominant streak instability 
mechanism [14].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Growth rate of most-unstable sinuous mode versus streamwise 
wavenumber, for streak distribution in figure 1 with  ωy

+|max=0.35, 
corresponding to a streak lift angle of θ20=56°. 
 
Having shown linear instability of a U(y,z) distribution visually 
representative of instantaneous lifted streaks in near-wall 
turbulence, we now quantify the growth rate variation with streak 
strength, defined in terms of the lift angle θ20 (defined above).  
Significantly, sinuous streak instability requires a threshold streak 
lift angle θ20 of approximately 50° (corresponding to a streak 
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city of ωy|max=0.27), reflected by the region of positive growth 
σ in figure 4.  Thus, lifted streaks may be either passive (stable) 
ynamically active (unstable) to small-amplitude sinuous 
rbations, depending upon rather slight (i.e. virtually 
tinguishable visually) differences in streak vorticity.  Past the 
bility cutoff, the growth rate increases approximately linearly 
 the streak vorticity ωy|max (nearly linearly with θ20 for this angle 
e), suggesting a dominant influence of U(z) shear in driving 
us instability (see also Yu & Liu [18] for Gortler streaks).  
rtheless, as shown below, the sinuous mode is inherently 
-dimensional, and its growth mechanism is distinct from that 
one-dimensional U(z) wake profile. Based on the instability 

ff behavior in figure 4 (consistent also with the stability of the 
lent mean profile U(y) for channel flow), the straightening of 

k vortex lines by background ωz is a strongly stabilizing effect 
inuous streak instability. 
g to the threshold behavior in figure 4, the role of (linear) 

k instability in fully developed near-wall turbulence relies 
ally on the magnitudes of streak ∂u/∂z (hence streak lift angle) 
lly realized.  To obtain conditional streak statistics, an 
tion procedure is used to extract individual streak realizations 
 fully developed turbulent channel flow at Re=1800 (Kim et al. 
atabase).   

e 4.  Dependence of sinuous mode growth rate on streak vortex line 
 θ20 at Re=2000, illustrating threshold of streak lifting required for 
 instability growth. 

histogram of streak lift angle statistics for fully-developed near-
turbulence are shown in figure 5 at eduction locations of 

0.  Analogous to the definition of θ20 above, the streak lift 
 at a general y is defined as θn=tan-1[|∂u/∂z|max / (dU0/dy)]y+=n.  

+=20, comparison of lift angle statistics (figure 5) with the 
sponding streak instability growth rate (figure 4) indicates that 

oximately 25% of near-wall streaks are strong enough (i.e. with 
cient ∂u/∂z) to be linearly unstable.  At y+=10 and y+=30 as 
 streaks stronger than the neutrally stable analytical streak (of 
orm (1)) occur in fully-developed turbulence.  (Thus, not all 
ks detected in the buffer layer are strong enough to become 
ble.) 
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Figure 5. Histogram of conditional streak vorticity statistics, for streaks 
educed at y+=20, from fully developed channel flow turbulence.  The bold 
line denotes the instability cutoff in figure 4. 
 
In summary, streaks of sufficient strength for linear instability are in 
fact realized in the buffer layer.  In contrast, most streaks nearer to 
the wall are numerous, but do not have sufficient lift angles to be 
linearly unstable and hence are dynamically passive with respect to 
streak instability.  Hence, a scenario of predominant vortex 
generation and turbulence sustenance via linear instability of lifted 
near-wall streaks must be evaluated carefully, as undertaken below. 
3.2 Linear Transient Growth 
We now consider the linear evolution of the instability eigenmode 
and other x-dependent disturbances of unfrozen, viscously decaying 
streaks.  As shown in figure 6 for an initially unstable streak with 
θ20=56°, the normal mode growth is arrested at t+~50 by the streak 
diffusion, resulting in a factor of two 3D energy growth (i.e. all x-
dependent modes).  Note that the typical nonlinear (finite 
amplitude) saturation is not occurring here. Instead, attenuation is 
due primarily to cross-diffusion (i.e. viscous annihilation, a kind of 
planar reconnection) of the opposite-signed ωy flanking the low-
speed streak.  In fact, ωy is reduced to 70% of its initial value by the 
E3D saturation time, indicating that the (exponential) streak decay 
rate due to cross-diffusion is non-negligible (approximately half the 
instability growth rate).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Evolution of 3D energy (all x-dependent modes), for most 
unstable linear eigenmode (solid) and w(x) linear transient distrubance 
(dashed).  The viscous streak annihilation is reflected by the decreasing 
streak vortex line lift angle (dotted). 
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ificantly, much more significant growth of the arbitrary w(x) 
rbation (3) occurs for the same base flow streaks, producing a 
r of 20 energy growth (figure 6). Recalling the modest factor 
o growth of the normal eigenmode, the dominant growth of 
(x) disturbance (3) indicates that its initial rapid amplification 
e to linear transient growth (see Trefethen et al. [17] for a 
w of the transient growth concept). In short, transient growth 
isturbances is possible for non self-adjoint (i.e. non-normal) 
rized Navier-Stokes operators, such as derived here for 
rbances of two-dimensional streaks.  Recall that eigenmodes of 
tional normal mode stability problems are not orthogonal to 
another if the corresponding linear operator is non-normal.  In 
case, particular disturbances (including specific combinations 
ormal eigenmodes) can generally be amplified by significant 
rs (i.e. linear transient growth), even if all normal eigenmodes 
ndividually stable.   
igure 6, the early-time evolution of the disturbance (3) is 
inated by non-normal mode transient growth (the only means 
isturbance growth to exceed that of the most unstable normal 

e).  Note that the disturbance (3) eventually locks-on to the 
al mode and hence excites both the non-normal transient 
rbance and the normal eigenmode.  Further, the relevance of 
isturbance (3) in the actual flow is supported by observations 
alternating quadrant 2 and 3 uw Reynolds stress events in near-
turbulence.  As further clear evidence of non-normal transient 
th, the w(x) disturbance (3) produces a factor of 7 energy 
th for linearly stable streaks (i.e. no growth due to stable 
al eigenmode), growth which is maintained into the nonlinear 
e (figure 7).  Finally, note the distinction of the linear 

ient growth of streaks U(y,z) revealed here, with the linear 
ients of the mean profile U(y) studied extensively to date (see 
1]). 

e 7. Evolution of 3D energy for w(x) transient disturbance of a linearly 
 streak with θ20=45°, for both linear (dotted) and finite-amplitude 
l disturbance amplitudes. 

onlinear evolution and vortex formation   
ng confirmed that (one-walled) streaks with sufficient y 
lation can experience significant growth of x-dependent  
rbances via a combined linear transient/instability mechanism, 
ow consider the subsequent nonlinear evolution using DNS.  
lts clearly illustrate the genesis of streamwise CS, near-wall 
r layers, and arch vortices, suggesting that streak disturbance 
th is the dominant mechanism of vortex generation and thus 
lence production.  Most significantly, as the mode grows to a 

inear amplitude (initially w´/Uc =1% at y+=30), new collapsed 
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streamwise vortices are directly created (figure 8a-c). At early 
times, disturbance growth is characterized by increased circulation 
of flattened ωx sheets, with the spanwise symmetry of the linear 
eigenmode approximately maintained.  Subsequently, as nonlinear 
effects (described below) become prominent, +ωx begins to 
concentrate on the +z flank of the low-speed streak (figure 8b).  By 
symmetry, the ωx distribution at a half wavelength in x away is 
obtained by z reflection and sign inversion; thus, -�x is generated 
on the -z flank here.  As this ωx amplification continues, collapsed 
(i.e. with compact cross-section) streamwise vortices quickly 
emerge (figure 8c). This genesis of new vortices from ωx layers is 
strikingly similar to that frequently observed in minimal channel 
flow.  
Previous studies (e.g. Jimenez & Orlandi [8]) have focused on wall 
vorticity layer rollup due to (2D) self-advection (and image 
vorticity due to wall impenetrability).  In the streak disturbance 
evolution described here, the vortex formation is not in reality a 
rollup process; the formation is inherently 3D, dominated by 
intense ωx stretching.  Even well past their initial formation, 
streamwise vortices and hence turbulence continue to be sustained 
(e.g. figure 8d), indicating the importance of this streak disturbance 
mechanism to turbulence sustenance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Streamwise vortex formation due to finite-amplitude streak 
instability, illustrated by cross-stream distributions of ωx at (a) t+=17, (b) 
t+=51, (c) t+=103, (d) t+=928.  Planes in (b) and (c) are tracked with the 
instability phase speed of approximately 0.6Uc. 
 
The 3D geometry of the newly generated vortices (figures 9a,b) 
(say, the x-overlapping of tilted, opposite-signed streamwise 
vortices on either side of a low-speed streak) agrees well with the 
typical flow structure during the active phase of minimal channel 
regeneration.  Most significantly, this vortex geometry (maintained 
upon evolution except for increasing overlap) is strikingly similar 
to that of 3D CS educed (from more than 100 vortex realizations) in 
full-domain turbulence (figure 10), which has been shown to 
capture all important near-wall events [6].  Irregularities (e.g. 
kinks) of the base flow streaks and finite-amplitude incoherent 
turbulence will surely occur, causing variations in vortices from one 
realization to another.  If an underlying instability mechanism is 
present, it should be revealed by ensemble averaging over a large 
number of base flow/perturbation combinations, i.e. by CS 
eduction.  The close correspondence of figures 9 and 10 indicates 
that this is in fact the case, serving as strong evidence that this 
vortex formation process is a dominant mechanism in near-wall 
turbulence. 
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e 9. Streamwise vortices’ (x,z) plane tilting, x-overlapping, and 
ion relative to a low-speed streak in (a) top view,  (b) side view.  The 
isosurfaces of +ωx  and -ωx at t+=103 are (dark) shaded and hatched 
ctively; contours of u at y+=20 are overlaid in (a), with low levels of u 
shaded to demarcate the low-speed streak. 

e 10. Near-wall educed CS and associated coherent events (adapted 
Jeong et al. [6]); including ±VISA events (±∂u/∂x); quadrant Re 
es Q1, Q2 (ejection), Q3, and Q4 (sweep); and a kinked low-speed 
. 

e the newly generated vortices are predominantly streamwise 
re 9a), the essential dynamics of vortex formation are those of 
hose inviscid evolution is governed by 
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gure 11, we observe that the circulation of the elongated near-
ωx layers (figure 11a) increases due to vortex line tilting, given 
e latter production term -(∂w/∂x)(∂u/∂y) (figure 11c), which 

inates the former. Although typically largest in magnitude over 
ther, the –(∂w/∂x)(∂u/∂y) term actually generates a flattened tail 
e near-wall ωx layer (C in figure 7c), not a vortex.  Contrary to 
 speculation, these layers do not roll up due to their self-
ction – a purely 2D mechanism.  In fact, the cross-stream 
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transport (B in figure 11b) actually opposes the rollup process, due 
to the opposite-signed ωx immediately overhead (SN in figure 11a).  
In reality, vortex formation is due to direct stretching of +ωx on the 
+z flank of the low-speed streak (also, -ωx amplification on the -z 
flank, at a half x wavelength away), evident from nearly circular 
regions of +ωx∂u/∂x there (D in figure 11d).  We find that this local 
ωx stretching is sustained in time and is mainly responsible for the 
vortex collapse, whose location coincides with the +ωx∂u/∂x peak. 
In turn, the positive ∂u/∂x responsible for vortex collapse by 
stretching is a simple consequence of low-speed streak waviness, 
illustrated in figure 9(a).  Recall that streak waviness is generated 
both by (linear) transient growth and sinuous streak instability.  
Once this waviness grows to a finite size, strong +∂u/∂x develops 
downstream of the streak crests, causing direct stretching of 
positive (SP) and negative (SN) ωx existing there.  Since a large 
velocity difference exists across the streak flanks (with vorticity 
comparable to the mean velocity gradient at the wall), a sizable 
value of +∂u/∂x is quickly generated by the rapidly growing streak 
wave.  The initial ωx sheets (figure 8a) then suddenly collapse 
(figure 8c) due to localized stretching (figure 11d), overcoming  
viscous diffusion which would otherwise cause their annihilation 
(on a similar timescale as the collapse).  Note that these dynamics 
are also captured as (ensemble-averaged) +VISA events (i.e. 
+∂u/∂x) existing within the CS core (figure 10), indicating that this 
vortex generation process is indeed a dominant one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Distributions of (a) ωx, and selected terms of the ωx evolution 
equation: (b) self-induction (cross-stream), (c) the -(∂w/∂x) (∂u/∂y) tilting 
term, and (d) direct stretching (ωx∂u/∂x); (a-d) are at an intermediate time 
during vortex formation (t+=51).  The bold line in each panel identifies the 
ωx layer. 
 
5.  Concluding remarks   
To summarize, we have shown that nonlinearly evolving w(x) 
disturbances of ejected low-speed streaks, initially without any 
vortices whatsoever, directly generates new streamwise vortices 
near the wall.  The resulting 3D vortex geometry is identical to that 
of the dominant CS, educed from fully developed near-wall 
turbulence, which in turn capture all important, extensively 
reported near-wall events.  This serves as strong evidence that 
vortex-less streaks are the main breeding ground for new 
streamwise vortices, commonly accepted as dominant in turbulence 
production.  In turn, the geometry of the newly generated vortices 
constitutes a built-in mechanism which sustains ejected streaks 
against their otherwise rapid self-annihilation due to cross-diffusion 
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y.  Vortex-less streaks, the vehicle for vortex formation, are 
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