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Abstract
Instantaneous energy and temperature dissipation rates are
measured simultaneously in decaying grid turbulence using a
probe consisting of 4 X-wires (a total of 8 hot wires operated in
constant temperature mode) and 2 pairs of parallel cold wires
(operated in constant current mode). The directly measured mean
values of the energy and temperature dissipation rates  agree,
within ±10%, with those obtained from the decay rates of the
mean turbulent energy and temperature variance. The probe also
yields all three fluctuating vorticity components; after correction
for spatial resolution, their spectra are in close agreement with
isotropic calculations over nearly all wavenumbers. The vorticity
variance decays with the same power-law behaviour as the mean
energy dissipation rate. Transport equations for the mean energy
and temperature dissipation rates are satisfied, within ±10%, by
the data obtained from this probe.

Introduction
Measurements of the energy dissipation rate ε≡2νsijsij and the
temperature variance dissipation rate χ≡κθ,iθi separately in
turbulent flows have been conducted by quite a number of
researchers (e.g. [1,2]), where sij≡(ui,j+uj,i)/2 is the turbulent rate of
strain, ui,j represents the velocity derivative ∂ui/∂xj and ν is the
kinematic viscosity of the fluid; θ,i represents the temperature
derivative ∂θ/∂xi and κ is the thermal diffusivity of the fluid.
Although these two quantities are available simultaneously in
direct numerical simulation databases, simultaneous
measurements of ε and χ have, to our knowledge, never been
attempted. Such measurements are important when the correlation
between ε and χ is required. They are also important for
examining the extension to passive scalars of Kolmogorov's
refined similarity hypothesis (RSHP) (e.g. [3]). The correlation
between suitable powers of ε and χ appears in RSHP. However,
measurements of ε and χ are not straightforward since multiple
cold wire probes need to be operated simultaneously with
multiple hot wire probes.  As the number of wires increases,
problems related to spatial resolution, noise contamination and
possibly aerodynamic interference become important (e.g. [4,5]).
The simplest way to estimate ε and χ is by assuming isotropy, viz.

2
11 )/(15 xuiso ∂∂= νε (1)

2
1)/(3 xiso ∂∂= θκχ (2)

where u1 is the velocity fluctuation in the streamwise (x1)
direction and θ is the temperature fluctuation. It is also generally
assumed that ∂u1/∂x1 and ∂θ/∂x1 can be estimated from ∂u1/∂t and
∂θ/∂t by using Taylor's hypothesis. The present study represents
the first attempt to measure these two quantities simultaneously in
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aying grid turbulence. In this flow, the true values of <ε>
χ> are known with relatively high accuracy from the rates of
 of the mean energy  )( 2
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 the subscript d denotes values obtained from the rates of
 so that the performance of the probe in measuring <ε> and
an be "calibrated''. This is an important prerequisite if  the
taneous values of ε and χ, obtained with this probe, are to
sted.

rimental Details
xperiment was conducted in a wind tunnel with a Taylor
scale Reynolds number Rλ of about 40 [Rλ ≡ u1'λ/ν, the
 denotes the rms value and λ≡u1'/(∂u1/∂x1)' is the
udinal Taylor microscale]. The probe consisting of four X-
 and two pairs of parallel cold-wires is shown in Figure 1.
eparation between two inclined wires in each X-probe is
 0.8mm. The separations between centers of X-probes are
.0mm and ∆x3≡2.5mm in the x2 and x3 directions,

ctively. The effective angle for each inclined wire is about
he separations of the parallel cold-wires are ∆x2≡2.0mm

x3≡2.5mm respectively. These four cold wires can measure
ee temperature derivatives that appear in the full expression

Details of flow conditions can be found in Zhou et al. [6].

ot and cold wires were etched from Wollaston (Pt-10% Rh)
. The active lengths are about 200dw and 800dw for the hot
old wires respectively (where dw is the wire diameter, equals
µm for the hot wires and 1.27µm for the cold wires). The
ires were operated with in-house constant temperature

ts at an overheat ratio of 0.5. The cold wires were operated
onstant current (0.1 mA) circuits. The probe was calibrated

 centerline of the tunnel against a Pitot-static tube connected
KS Baratron pressure transducer (least count = 0.01 mm

. The yaw calibration was performed over ±20o. Output
ls from the anemometers were passed through buck and gain
ts and low-pass filtered at a cut-off frequency fc ranging
en 1250 Hz (at x1/M=20) to 800 Hz (at x1/M=80). The
 of fc was generally close to U1/2πη, which is commonly
fied as the Kolmogorov frequency fK. The filtered signals



were subsequently sampled at a frequency fs =2 fc using a 12-bit
A/D converter. The record duration was about 90s.

               (a) Side view                                (b) Front view

Figure 1. Sketches of the probe.

Experimental Results
With the 4 X-wire probe, <ε> can be approximated by assuming
continuity (e.g.  [7]) ,
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The three vorticity components were also obtained from the
measured ui, viz.
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where ui,j≡∂ui/∂xj. ∆u3 and ∆u1 in (6) and (8) respectively are
velocity differences between X-probes a and c (Figure 1); ∆u2 and
∆u1 in (6) and (7) respectively are velocity differences between X-
probes b and d. Derivatives in the x1 direction were estimated
using Taylor's hypothesis, i.e. ∂/∂x1=-U1∂/∂t. Because of the low
turbulence ( %,2/' 1 ≤Uui  where i = 1,2,3), the use of Taylor's
hypothesis should be satisfactory.

With the four cold wires, the full temperature dissipation rate <χ>
can then be obtained, viz.

 }{ 2
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2
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Again, Taylor’s hypothesis was used to convert temporal
derivatives to longitudinal spatial derivatives.

Since the correct selection of wire separation is crucial for
derivative measurements, a preliminary experiment was
conducted to determine the optimum separation of the wires.
Details of these results can be found in [6]. The present probe
configuration was based on those optimum values. Before
presenting statistics for ui or ωi, it is relevant to address the effect
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e imperfect spatial resolution of the probe on the
rements. The high wavenumber part of the velocity
um and, more especially, the vorticity spectrum is expected
 attenuated due to this imperfect resolution. Detailed
ssions for this attenuation were given in [5] for the three-
onent vorticity probe. The corrected spectra of ωi (i=1,2,3)
 measurement location x1/M=40 are shown in Figure 2. Here
pectrum αφ is defined such that ∫ >=<∞

0
2

1 αφαdk . Also
n for comparison are the spectra calculated using isotropic
ns in terms of 

1,1uφ  (e.g. [8]),
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comparison provides a performance check of the probe in
ring ωi as well as a check for local isotropy. The agreement
en corrected spectra and corresponding isotropic

lations is quite good at all wavenumbers even at such a small
 of Rλ, reflecting the association of vorticity mainly with
 scales.

 2. Comparison of measured vorticity spectra with isotropic
ations. Measured:  : α=ω1;  - , ω2;  - - , ω3.
lated: - - -, ω1 (Eq. 10); , ω2 (or ω3) (Eq. 11).

alues of <ε>d and <χ>d obtained via (3) and (4) provide
marks for <ε> and <χ>. From x1 derivatives of <q2> and
 estimates of <ε>d and <χ>d , which decay with power-law
ents of 2.3 and 2.4 respectively, can be obtained. They are

n as dashed lines in Figures 3(a,b). Also shown in these
s are the measured values of <ε>ful and <χ>ful obtained using

(5) and (9) and values of <ε>iso and <χ>iso. Because of the
fect spatial resolution of the cold wire arrangement for x1/M
 the derivatives in Eq. (9) were also corrected.  Details for
rature derivative corrections can be found in Antonia and
]. The favourable agreement (within ±10%) between either

l [Eq. (5)], <ε>d and <ε>iso (Figure 3a) or <χ>ful [Eq. (9)],
 and <χ>iso (Figure 3b) indicates that  <ε>ful and <χ>ful can
imated adequately with the present probe.
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Assuming local isotropy, the three vorticity components are
related to the value of >< 2

1,1u ,viz.
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Eq. (12) has been verified in [7].  We have also verified it in this
study to an accuracy of ±10% (Figure 4).

Figure 3. Streamwise decay of (a): <q2> and <ε>, (b): <θ2> and <χ>. ∆T
is the mean temperature above ambient. ο: <q2> and <θ2>;  ∇: <ε>iso and
<χ>iso; ∆: <ε>ful (Eq. 5) and <χ>ful (Eq. 9). Lines are power-law fit.

Figure 4. Components of mean square vorticity and comparison with
isotropy.  The solid line is the power-law fit to the measured vorticity
variances.

The equation describing the rate of change of enstrophy <ω2>
(≡<ωiωi>) or equivalently <ε>/ν in homogeneous isotropic
turbulence was first derived by von Kármán [10]
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wo invariants on the right side of (13) represent the creation
> through the stretching of vorticity by the turbulent strain
field and the destruction of <ε> through the action of
sity. Using the isotropic forms of <ωiωjui,j> and <ωi∇2ωi>,
3) can be simplified to the equation obtained by [11], viz.
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erified, to reasonable accuracy, by [11] using only single hot
measurements at several locations downstream of the grid.
ted by [11], the terms on the right of (14) dominate this

ion; the term on the left representing the small difference
en the dissipation and production terms on the right side of
quation. A general transport equation for <χ> was first
n by Corrsin [12], who compared it with the equation for
≡<ωiωi>. In decaying grid turbulence, Corrsin's equation
es to [13]
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wo invariants on the right side of (15) represent the creation
> through the stretching of the temperature field by the

lent strain rate and the destruction of <χ> through molecular
thing. For stationary turbulence and at sufficiently large
olds numbers, there is approximate equality between the
 on the right of either (13) or (15). Using isotropic forms of
jui,j> and <θ,j∇2θ,j> as given in [14], Eq. (15) can be
ified to
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 κν /Pr ≡ is the Prandtl number, κλθ /'
1uPe ≡  is the

lent Péclet number, '
1,

' /θθλθ ≡  is the Corrsin microscale

)/( 22' >><<><≡ χεθ qR  is the energy-temperature
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ctively. By using the decaying relations for <ε> and <χ>
 3 and 4), the transport equations for <ε> (14) and <χ>  (16)
e recast as (e.g. [14])
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that Eq. (17) reduces to the expression given in [11] when
Eqs.  (17) and (18) can be interpreted as equations for G and
lternatively, they can also be interpreted as equations for n
; they would then represent a relatively stringent test of the
red values of G and Gθ.



In the present study, the values for S and ST are about −0.45 and
−0.4 respectively. The estimation of G and Gθ. requires
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determined properly. To obtain adequate closure of the above
integrands, the measured distributions of 

1uφ  and θφ  are first
corrected for spatial resolution using the procedures outlined in
[13] and then extrapolated beyond the low-pass filter cut-off
frequency to allow adequate convergence of the above integrals.
The method outlined in [15] was adopted for extrapolation; at
sufficiently large *

1k , the spectra 
1uφ  and θφ  has the form
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dkkk uφ  and ∫∞0 1

4
1 )( dkkk θφ . The resulting values of G

and Gθ., as shown in Figures 5(a,b), are equal to about 12.1 and
14.3  respectively, and are approximately constant with respect to
x1. G and Gθ. can also be obtained with (17) and (18). They are
compared in Figures 5(a,b) with the directly measured values. The
good agreement between the measured and calculated values of G
and Gθ. indicates that the present probe performs satisfactorily.

Figure 5. Comparison of (a): G and (b): Gθ between measurement and
calculation.  ∇: measurement; ∆: Calculation;   - : range of ±10% of
the averaged values () between measurement and calculation.

Conclusions
Instantaneous energy and temperature dissipation rates are
measured simultaneously in decaying grid turbulence using a
probe consisting of 4 X-wires (a total of 8 hot wires operated in
constant temperature mode) and 2 pairs of parallel cold wires
(operated in constant current mode). Extensive checks were made
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st the performance of the probe. The directly measured
s of the mean energy and temperature dissipation rates  agree
 ±10% with those obtained from the streamwise decay rates
 mean energy and the temperature variance. The probe also
 all three fluctuating vorticity components; their spectra are
lose agreement with isotropic calculations, almost
endently of the wavenumber; their variances are also
stent with isotropy [Eq. (12)].  Transport equations for the
y and temperature dissipation rates are closely satisfied by
ata obtained from this probe. The measured instantaneous
s ε and χ are expected to be good approximations to the true
taneous dissipation rates.
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