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Abstract
The same probe, comprising two parallel wires, is used to
measure either velocity or temperature derivatives in shearless
grid turbulence. The aerodynamic interference of the probe affects
the mean velocity when the transverse separation ∆y between the
wires is smaller than about 3η, where η (≈0.4 mm) is the
Kolmogorov length scale, but does not affect the mean
temperature. Moments of transverse velocity and temperature
derivatives are significantly but similarly affected when ∆y<3η,
thus suggesting that this effect is more likely to be caused by
electronic noise than aerodynamic interference. After noise
corrections are applied, the resulting derivative variances are
brought into alignment with values inferred from two-point
correlations with respect to y. Transverse derivative variances and
their corresponding spectra satisfy isotropy closely but second-
order structure functions satisfy it only when the separation is less
than about 10η.

Introduction
The mean energy dissipation rate <ε>≡2ν<sijsij> and the mean
temperature variance dissipation rate <χ>≡κ<θ,iθ,i> are important
quantities from theoretical as well as practical points of view,
where sij≡(ui,j+uj,i)/2 is the turbulent rate of strain, ui,j represents
the velocity derivative ∂ui/∂xj and ν is the kinematic viscosity of
the fluid; θ,i represents the temperature derivative ∂θ/∂xi and κ is
the thermal diffusivity of the fluid. Whilst a complete
determination of ε and χ is possible in direct numerical
simulations, experimentally, the task is fraught with difficulty
since twelve velocity derivative and three temperature derivative
correlations need to be determined simultaneously.  The simplest
way to approximate <ε> and <χ> is by assuming isotropy, i.e.

>∂∂<=>< 2)/(15 xuiso νε (1)

>∂∂<=>< 2)/(3 xiso θκχ ,    (2)

where u is the velocity component in the streamwise (x) direction
and θ is the temperature fluctuation. It is generally assumed that
∂u/∂x and ∂θ/∂x can be estimated from ∂u/∂t and ∂θ/∂t using
Taylor's hypothesis so that only single hot and cold wires are
sufficient for determining <ε>iso and <χ>iso. Errors resulting from
Taylor's hypothesis and the isotropic assumption cannot be
discounted. The shortcomings of Taylor's hypothesis and local
isotropy are relatively well known, especially in regions where
local turbulence intensity is high and in the vicinity of walls. To
measure all three components in χ, two orthogonal pairs of
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el cold wires are required (e.g. [1-3]). To measure all the
e components involved in ε simultaneously, at least nine hot
 are needed (e.g. [4]). As the number of hot and cold wires
ses, the spatial resolution of the probe becomes increasingly
tant [5,6]. In general, too large a measurement volume is
 to cause attenuation of the derivative spectra whereas noise
mination and possibly aerodynamic interference are
ted to dominate as the measurement volume decreases.

revious conflicting difficulties are best investigated in the
xt of a simple probe geometry, i.e. a pair of parallel wires
or cold). This arrangement has been analyzed by many
tigators [2,6-8]. Recently, Lasserre [8] examined a wide
 of possible causes for the spurious increase in the measured
s of <(∆u/∆y)2> and <(∆θ/∆y)2> as ∆y decreases. Effects
as thermal and electrical cross-talk between the wires,

ences between velocity sensitivities of the wires and
tainty in estimating ∆y were readily dismissed. Electronic
 was deemed to be important whilst aerodynamic
bances due to the probe geometry could not be altogether
ated. In the light of these observations, it was thought that
insight into the possible importance of the aerodynamic

bance would be gained by using the same probe (same
) and by operating the wires either as velocity sensors or as
rature sensors. In this way, the aerodynamic disturbance
 be identical in each case so that the effects of reducing ∆y

e spectra and variances of ∆u/∆y and ∆θ/∆y can be assessed
meaningfully.

rimental Details
verse velocity and temperature derivatives were measured in
d tunnel at x/M=30 downstream of a grid, where x is
red from the grid and M≡24.76 mm is the mesh size of the

The Taylor microscale Reynolds number Rλ is 40 [Rλ≡u'λ/ν,
ime denotes rms value and λ≡u'/(∂u/∂x)' is the longitudinal
r microscale]. The main reason for selecting such a low Rλ
t, at this speed, the Kolmogorov frequency fK (≡U/2πη,
 η≡ν3/4/<ε>1/4 is the Kolmogorov length scale) is about
Hz. This is close to the 3dB cut-off frequency of the wires
 operated in constant current mode, thus minimizing errors
d by high frequency noise. The grid, located at the entrance
 working section, has a square mesh with a solidity of 35%.
ndoline, located a distance of 1.5M downstream of the grid,
used for introducing heat into the flow. Details of the
oline can be found in [9]. The probe consists of two parallel
 with separation ∆y*=0.5-15. The asterisk denotes
alization by η, the velocity scale uK≡(ν/<ε>)1/2 and/or the



temperature scale θK≡(<χ>η/uK)1/2. The wire prongs were inclined
to about 45o to the x-axis in an attempt to "minimize'' the
aerodynamic disturbance, since according to Comte-Bellot et al.
[10], an inclination of either 0o  or 90o  would tend to maximize
the disturbance. The wires had a diameter of 1.27µm and were
etched from Wollaston (Pt-10% Rh) wire to an active length of
about 0.8mm. The output signals from the anemometers were
passed through buck and gain circuits and low-pass filtered at a
cut-off frequency fc=1250 Hz. The signal-to-noise (SN) ratio was
estimated to be about 200 for the hot wires and about 50 for the
cold wires.

Experimental Results
The effect of ∆y on the mean velocity U and temperature T is
shown in Figure 1. The mean velocity distributions from wires 1
and 2 remain within ±0.5% of the averaged value of the two wires
for ∆y*>3.0. It would appear that there is no aerodynamic
interference effect on U for this ∆y range. As ∆y* decreases below
3.0, U from wire 1 increases whereas U from wire 2 decreases.
The effect on U  for ∆y*<3.0  is not due to cross-talk between the
wires since varying the overheat of one of the wires did not affect
either of the distributions of U in Figure 1 (for a detailed study of
the cross-talk effect, see [8]). The two distributions of T follow
each other closely and remain within ±0.5% of their average
value, independently of ∆y. Given that the experimental
uncertainty in measuring T is about ±1%, it seems reasonable to
conclude that, any aerodynamic interference due to the geometry
of the probe does not affect the mean temperature sensed by the
wires.

Figure 1.  Mean velocity and mean temperature for different wire
separations.  ∆: wire 1;  ∇: wire 2. The dot-dashed lines correspond to
±0.5% of the averaged values of wires 1 and 2.

The effect of ∆y on u' and θ' is shown in Figure 2. To within the
experimental uncertainty (±2%), u' and θ' can be considered to be
independent of ∆y, implying the absence of any aerodynamic
effect on the fluctuating signals. Further corroboration of this is
provided by the spectra of u and θ in Figure 3. Here, the spectral
density φα(k1) is defined such that ∫ >=<∞

0
2

11)( αφα dkk . There is

nearly no difference between φu(k1) [or φθ(k1)] for different
separations, independently of the wavenumber. To avoid
crowding, only spectra corresponding to two different wire
separations are shown in Figure 3.

The values of <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> for different wire
separations are shown in Figure 4. For isotropic turbulence,
<(∂u*/∂y*)2> and <(∂θ*/∂y*)2> should be 2/15 and Pr/3 (≈0.24)
respectively. It is expected that <(∂u*/∂y*)2> and <(∂θ*/∂y*)2> are
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ached monotonically by <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> in
mit of ∆y*→0. However, the trend shown in Figure 4
tes that <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> increase
atically in a rapid and spurious manner. The sharp increase

∆u*/∆y*)2> and <(∆θ*/∆y*)2> has been assumed (e.g. [2,6])
flect mainly the noise contamination but Mestayer and
baud [5] also considered the contribution from errors in

calibration. The decrease of <(∆u*/∆y*)2> and <(∆θ*/∆y*)2>
er ∆y* reflects the impairment in spatial resolution. Figure 4
tes that there is only a small range (e.g. ∆y*=4-5) over
 <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> agree favorably with their
ponding isotropic values.

 2.  Rms values of velocity and temperature fluctuations for
nt wire separations.  ∆: wire 1;  ∇: wire 2. The dot-dashed lines
pond to ±1.5% of the averaged values of wires 1 and  2.

 3.  Velocity and temperature spectra for different wire separations.
y*=0.5 (from wire 1);  - : ∆y*=0.5 (from wire 2);  :

3.5.

orrection for noise contamination can be made using a
d similar to that outlined in [2]. These corrected values are
included in Figure 4. The resulting variations of
/∆y*)2> and <(∆θ*/∆y*)2> with respect to ∆y* are clearly
er than those of the original (noise contaminated) values.

values of the derivative variances <(∂u*/∂y*)2> and
/∂y*)2> can also be inferred from the correlations between
and u(y+∆y) or between θ(y) and θ(y+∆y). Using Taylor
 expansions, to order (∆y)3, the auto correlation coefficients
nd θ can be written as:

( )[ ]32
2

2
)/(

2
)(1 yxu

u
y

u ∆+>∂∂<
><

∆−= ϑρ (3)

0.100

0.105

0.110

0.115

0.120

0 5 10 15
0.40

0.42

0.44

0.46

0.48

0.50

-1.5%

+1.5%

-1.5%

+1.5%

∆y*

θ' 
(o C

)
10-3

10-1

101

103

10-5 10-4 10-3 10-2 10-1 100
10-1

101

103

105

k1
*

u
1

φ* θ(k
1* )



( )[ ]32
2

2
)/(

2
)(1 yxy ∆+>∂∂<
><

∆−= ϑθ
θ

ρθ . (4)

Parabolic fits to the distributions of ρu and ρθ yielded the values
of <(∂u*/∂y*)2> and <(∂θ*/∂y*)2> (indicated by horizontal arrows
next to the vertical axes) in Figure 4. These values are in close
agreement with the peaks of the noise-corrected distributions of
<(∆u*/∆y*)2> and <(∆θ*/∆y*)2>. Note that the values of ρu and ρθ
were noise-corrected; although the correlations are unaffected by
noise, the correlation coefficients are affected through the
variances of u and θ.

The spectra of ∆u*/∆y* and ∆θ*/∆y* have been corrected for the
attenuation caused by the finite values of ∆y and the effect of wire
length l. Details of the correction procedures can be found in
Antonia and Mi [11]. The corrected values of <(∆u*/∆y*)2> and
<(∆θ*/∆y*)2>, which are also included in Figure 4, were estimated
by integrating the corrected spectra of ∆u*/∆y* and ∆θ*/∆y*. They
are essentially constant and agree to within ±0.5% with the
corresponding isotropic values for ∆y*≥8. When ∆y* decreases,
the corrected values of <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> increase
slightly. At ∆y* =4, the magnitudes of <(∆u*/∆y*)2> and
<(∆θ*/∆y*)2> are about 10% and 15% greater than the derivative
values inferred from the correlations. It is likely that this
discrepancy reflects the fact that the spectra for ∆u*/∆y* and
∆θ*/∆y* have not been corrected for noise contamination. Such a
correction would have required recordings of unfiltered signals
([8]), which, unfortunately, were not made, as well as a basis for
extrapolating the noise spectrum to lower frequencies.

Figure 4. Dependence of <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> on wire
separation.  ∆: measured; ∇: spectrally corrected; − −: isotropic values; 
: noise-corrected. ο on the ordinate: 2<(∂u*/∂x*)2> or <(∂θ*/∂x*)2>.
Horizontal arrows next to the vertical axes indicate <(∆u*/∆y*)2> and
<(∆θ*/∆y*)2> obtained from Eqs. (3) and (4).

The measurements of ∆u/∆y and ∆θ/∆y allow several isotropy
checks to be made. One measure of departure from isotropy is
provided by comparing the measured spectra with calculations
using isotropic relations (e.g. [12])

∫=
∞

∂∂∂∂
1

)(12 1//
k

x
cal

y dkk
k αα φφ (5)

where the superscript cal denotes "calculation'' and α represents
either u or θ. Comparisons between measured and calculated
distributions of yu ∂∂ /φ and y∂∂ /θφ  for 4* =∆y  are shown in
Figure 5. In each case, there is a significant wavenumber range
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which the agreement between the two distributions may  be
ble. When the ratio y

cal
y ∂∂∂∂ // / αα φφ is plotted on a linear

 its magnitude remains within 10% of 1 (the isotropic value)
he range 6.0*

1 <k  except for θα =  at 003.0*
1 ≤k .

isotropic turbulence, the second-order longitudinal and
erse velocity structure functions are related by (e.g. [12])

><







∆∂
∂∆+>=< 22 )(

)(2
1)( LT S

x
xS δδ (6)

 δSL is the longitudinal velocity structure function which
e obtained from the longitudinal velocity fluctuations by
rting the time delay τ to a spatial increment ∆x (≡Uτ) using
r's hypothesis, i.e. δSL=u(x+∆x)-u(x). The transverse
ure function δST can be obtained either from two-point
udinal velocity measurements separated by a transverse
ce ∆y, i.e. δST=u(y+∆y)-u(y) or from one-point
rements of the transverse velocity component separated by

gitudinal distance, i.e. δST=v(x+∆x)-v(x). In Figure 6, the
red values of <[∆u(∆y)]2> and <[∆v(∆x)]2> are compared
hose calculated using Eq. (6)  based on the measured values
SL)2>. Because of the relatively poor temporal resolution of
ta at small values of ∆x, an interpolation formula (e.g. [13])
first fitted (dotted line) to the measured values of
∆x)]2> before carrying the differentiation with respect to

s per Eq. (6). The resulting distribution of calculated
)2> follows the measurements of <[∆u(∆y)]2> for ∆y* ≤ 10,
ting that isotropy is approximately satisfied only for scales
 the dissipative range. In the limit ∆y*→0, the second-order

ure functions must vary as (∆y*)2; a line of slope 2 has been
ed to show that this is indeed the case.

 5. Comparison between measured and calculated [Eq. (5)]
erse velocity and temperature derivative spectra.
alculated;  - : measured.

otropic turbulence, the second-order scalar structure
ons should be independent of the direction in which the
ation is taken (e.g. [14]), i.e.

>∆∆>=<∆∆< 22 )]([)]([ xy θθ (7)

relation has been checked by [14] in a heated turbulent
ary layer and by Mydlarski and Warhaft [15] in slightly

d turbulence downstream of an active grid with a mean
rature gradient. Mestayer [14] found that Eq. (7) was not

ied, either in the scaling range or in the dissipative range. On
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the other hand, Mydlarski and Warhaft [15] verified (7) in the
inertial range whilst, in the dissipative range, the left side of (7) is
about 50% larger than the right side, independently of Rλ. This
latter result violates isotropy. The present distributions of
<[∆θ(∆y)]2> and <[∆θ(∆x)]2> are shown in Figure 7. They satisfy
(7) reasonably well for ∆x* (or ∆y*) ≤ 10; as expected, at small
∆y*, <[∆θ(∆y)]2>  varies as ∆y*2  to a good approximation. The
previous results may reflect an important difference between the
present flow, in which the scalar variance is spatially decaying,
and the flows considered by [14] and [15], where mean
temperature gradients were present, thus providing a continuous
supply of <θ2>. Collectively, Figures 6 and 7 suggest that strictly
only the smallest scales (that fall within the dissipative range)
satisfy isotropy in the present low Reynolds number grid
turbulence. This small range of scales is not easily reconcilable
with the relatively large wavenumber range over which measured
velocity and temperature derivative spectra agree with
corresponding isotropic calculations (Figure 5). This difference
suggests that the translation between the power-law range in the
energy or temperature spectrum (i.e. the spectral domain) and that
in the structure function (i.e. the physical domain) is inexact, as
was discussed in detail by Hou et al. [16]. Consequently, the
ranges over which local isotropy is satisfied in the physical and
spectral domains are unlikely to be identical, especially when Rλ
is small.

Figure 6. Comparison of measured second-order transverse structure
functions with isotropic calculations. The solid line has a slope of 2.
∇: <[∆u(∆x)]2>; ∆: <[∆v(∆x)]2>; o: <[∆u(∆y)]2>;  - : <(δST)2> from
Eq. (6); − −: fit to <[∆u(∆x)]2>.

Figure 7. Comparison between temperature structure functions obtained
with separations in x and y directions. The solid line has a slope of 2.
O: <[∆θ(∆x)]2>;  □ : <[∆θ(∆y)]2>.

Conclusions
The present measurement results indicate that the mean velocity U
measured by the two wires is not influenced by the transverse
separation between the wires unless ∆y is smaller than about 3η.
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xpected, this interference does not influence the mean
rature T. Perhaps surprisingly, there is no discernible effect
 on either the rms velocity or rms temperature values. The
 corrected values of <(∆u*/∆y*)2> and <(∆θ*/∆y*)2> can be
ciled both with the derivative variances inferred from the
oint correlation functions, with respect to  y, of u and θ and
ngitudinal derivative variances 2<(∂u/∂x)2> and <(∂θ/∂x)2>.
d-order velocity and temperature structure functions
te that only dissipative scales (∆y* ≤ 10) satisfy isotropy.
range is much smaller than that for which the spectra of
 and ∂θ/∂y satisfy isotropy.
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