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Abstract 
Transient boiling is examined for conditions related to the 
hypothetical heating of liquids in a storage tank by an external 
fire, with the potential for evaporation of the liquids and the 
release of toxic gases into the environment. Temperature and 
void fraction distribution data were obtained from an experiment 
on water heated in a tank. Numerical simulations were also 
performed. These generally agreed reasonably well with 
measurements.  
 
Introduction 
Transient boiling processes are encountered in many industrial 
applications such as in nuclear reactors, in steel production, and 
in electronics component cooling.  In this study, the heating of 
liquid in a storage tank by an external heat source is investigated 
numerically and experimentally. Safety concerns arise if the 
inventory contains hazardous liquid chemicals and the tank is 
exposed to an external fire. This could lead to liquid evaporation 
and the subsequent release of toxic gases into the environment. 
 
An experiment in which water was heated in a tank was 
performed at the Institute of Safety research, Rossendorf [1]. 
Temperature and void fraction distribution data were obtained as 
a function of time. Recently, numerical analyses of the tests were 
carried out [2] using the Computational Fluid dynamics (CFD) 
code CFX-4.4, developed by AEA technology [3]. The boiling 
model implemented in CFX-4.4 was applied, which is based on 
Anglart and Nylund [6] mean bubble diameter and Tolubinsky 
and Kostanchuk [8] bubble departure diameter. In the present 
paper as the second set of predictions was from the code 
modified to incorporate a more realistic boiling model recently 
developed at ANSTO [4,5]. Preliminary results are presented 
here. The boiling model is being further developed for better 
prediction of transient boiling of the type considered here.  
 
Experiment Arrangement 
The experimental test arrangement consisted of a 0.25 m high, 
0.25 m diameter cylindrical tank (see figure 1). The initial water 
inventory was about 10 kg. The side vertical walls were heated 
by elements with an overall power of 4 kW. The heating power 
was uniformly distributed over the walls. 
 
The tank was equipped with thermocouples (•) and conductivity 
probes (□). As shown in figure 1 and table 1, these measured 
local temperatures and void fractions at various axial and radial 
locations. Void data were obtained at wall distances of 1mm and 
at the cylinder centre; temperature data were obtained at wall 
distances of 1 mm and 10 mm. A third void fraction 
measurements line was made available, which was moveable in 
the horizontal direction. During the last part of the test, this 
provided a full radial distribution of the void fraction. The time 
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ndence of the actual heat flux on the tank wall during the test 
own in figure 2.  
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re 1. Spatial arrangement of the measuring probes. 
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Height 
[mm] 

 
Near  the wall 

 
Centre 

  1 mm 10 mm  

  Temp. Void Temp. Temp. Void 

6 195 T11 V12 T10 T17 V6 

5 160 T9 V11 T8 T16 V5 

4 125 T7 V10 T6 T15 V4 

3 90 T5 V9 T4 T14 V3 

2 55 T3 V8 T2 T13 V2 

1 20 T1 V7 T0 T12 V1 

e 1. Measurement locations of thermocouples and 
uctivity probes. 

-Phase Boiling Model 
o-fluid model formulated in terms of two sets of governing 
tions for the balance of mass, momentum and energy of each 



 

phase is used to predict the boiling process. A standard κ-ε model 
is employed to account for the turbulent boiling flow. The 
interaction of these two phases is effected through closure 
relationships such as inter-phase drag, heat and mass transfer 
terms in the field equations. These terms have been highlighted 
elsewhere (Anglart and Nylund [6], Tu and Yeoh [5]) and will 
not be repeated here. 
 

The capability of the default and improved boiling models of 
CFX4.4 for boiling predictions are assessed in this study. In 
particular, relationships determining the mean bubble diameter in 
the bulk liquid and the bubble departure diameter at the heated 
wall are investigated. Under low-pressure subcooled flow 
boiling, the correct quantification of the partitioning of the wall 
heat flux at the boundary is required. Important physical 
processes of the heat partition model are briefly described.  
 
Mean Bubble Diameter 
In the existing model of CFX-4.4, the mean bubble diameter in 
the bulk liquid is modelled as a linear function of local liquid 
subcooling, as originally proposed by Anglart and Nylund [6]. 
 
In the alternative developed at ANSTO, the correlation 
developed by Zeitoun and Shoukri [7] is instead adopted because 
of its applicability for subcooled boiling flow at low pressures. 
Zeitoun and Shoukri [5] correlated their experimental data  with:   
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where ρl and ρg are the liquid and vapour densities and ∆ρ is the 
difference between ρl and ρg. Here Ds is the mean Sauter 
diameter; σ is the surface tension; and g is the gravitational 
acceleration. The non-dimensional parameters in equation (1) are 
Re, the flow Reynolds number; Bo, the boiling number; and Ja, 
the Jakob number. The mean diameter is estimated from the 
mean Sauter diameter. 
 
Bubble Departure Diameter 
The existing CFX-4.4 bubble departure relationship as a function 
of subcooling temperature is the empirical correlation of 
Tolubinsky and Kostanchuk [8].  
 
In the improved model the bubble departure diameter correlation 
of Fritz [9] for low pressure is employed: 
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Figure 2.  Experimental heat flux as a function of time. 
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e ϕ is the contact angle, taken to be 80°. 

l Heat Partition Model 
ous experimental and theoretical investigations for low-
ure subcooled boiling flow (Judd and Hwang [10] and 

or et al. [11]) suggest that the wall heat flux has three 
ponents:  

heat transferred by evaporation or vapour generation, Qe;  
heat transferred by conduction to the superheated layer next 
to the wall (nucleate boiling or surface quenching), Qq; and 
heat transferred by turbulent convection, Qc.  

e are discussed further in [5]. 

erical Procedure 
tank was modelled in two-dimensional cylindrical 

dinates. The steam released at the upper surface was 
elled as a degassing boundary. It acts as a steam sink 
rding to the rising velocity of steam and to the steam volume 
ion. 

ansient simulation of the two-fluid model, comprising two 
of governing equations for the balance of mass, momentum 
energy of each phase, was performed. The conservation 
tions were discretised using the control volume technique. 
higher-order QUICK scheme was employed for the 

ction. The velocity-pressure linkage was handled through the 
PLE procedure. Time dependence was treated implicitly 
 the second-order backward differencing. The discretised 

tions were solved using Stone’s Strongly Implicit Procedure 
except for the pressure correction where Algebraic Multi 

ing solver [11] was employed to accelerate convergence. 
putational results were obtained on an uneven mesh 
ibution of 32 respective 40 (radial) × 32 respective 80 
ht) with elements most densely concentrated near the 
dary walls.  

iterative procedure was employed to evaluate the wall 
erature on the heated side. The applied heat flux at the wall, 
rtitioned into the three components described above, must 

fy  

ceq QQQq ++=       (3) 

isection method was used to determine the tank wall 
erature that satisfies equation (3). The iteration continued 
 the residual of equation (3) between the applied and 
lated wall heat flux was less than 10-4 of the total heat flux. 

ults and Discussion 
re 3 compares measured and predicted transient temperature 
les at the centre of the tank. During the first 900 seconds 
e phase heating up with a strong temperature stratification 
observed and calculated. After the first occurrence of steam 
e upper part of the heated side wall, the rising steam 

lerates the fluid. The previously temperature stratified region 
ixed up by the generated steam. A horizontally orientated 
dary between upper well-mixed and lower temperature 

ified region is established. During the further heating up 
ess these boundary moves gradually downwards. When the 



 

boundary passes a thermocouple, a temperature jump is found. 
Temperatures jumped to about 370 K between 900 to 1200 
seconds. This behaviour is denoted as the first kind of 
temperature jumps. Both predictions clearly replicated this 
phenomenon. A quantitative comparison shows, that the 
improved boiling model yields a better accordance to the 
experiment( see figure 3). More definite transitional temperature 
jumps occurred at levels 1 to 4. For the improved boiling model  
(see figure 3© at level 1 (the largest jump), the predicted ∼ 40K 
jump compares favourably with the ∼ 30K measured jump. Its 
experimental onset at about 1220 s is accurately predicted. The 
1130 s at which the temperature jumped at level 2 temperature is 
also accurately predicted. The temperature jumps at levels 3 and 
4 were predicted to occur marginally later than they actually did. 
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Figure 3. Measured (a) and predicted (b) (default CFX-4.4 
boiling model) and (c) (improved boiling model) temperatures at 
the centre of the tank (Temperature thermocouples T12 to T17). 
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re 4 shows the calculated temperature distributions at 1000 s 
at 1200 s. The stratification of temperature due to natural 
ection is clearly seen in figure 4(a). Here, the inception of 
eate boiling produced only at the heated wall a thin layer of 
ously upward moving fluid. At later times, more steam was 
rated, and the rising steam accelerated the fluid. The upper 
n becomes well mixed, whereas the lower region remains 
erature stratified. Figure 4(a) shows the boundary between 
d and stratified region at about 80% of the height of the 

. As more heat was added to the tank, the boundary moves 
ually downward. Figure 4(b) shows the boundary at about 
 of the height. When the boundary reaches the bottom and 
whole tank is well mixed, pool boiling occurred and the 
nd kind of temperature jump were observed. The two-fluid 
ng model was reasonably successful in capturing the 
itional state leading to the second kind of temperature jump 
ever, after about 1280 seconds, the remainder of the 
omenon could not be simulated because of convergence 
culties.  
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re 4. Temperature distribution at: (a) 1000 seconds and 
200 seconds. (Improved boiling model) 

re 5 shows the measured and calculated local void fractions 
 away from the heated wall and at the tank centre. Both 

lations fail with higher void fractions for numerical reasons. 
ever, the improved boiling model (see figure 5(c)) predicted 
 void fractions that were comparable to those measured 



 

during the first kind of temperature jumps. At later times (>1280 
s), this model also starts to predict unrealistic behaviour. More 
modelling work is in progress to extend the capability of the 
present boiling model to simulate the second kind of temperature 
jump. 
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Figure 5. Comparison of local void fractions at 1 mm wall 
distance (V10, V11, V12) and in the centre (V06) (a) 
measurement, (b) CFX default and (c) improved CFX boiling 
models. 
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clusions 
 paper presents experimental and numerical investigation of 
ient pool boiling in a storage tank subjected to heat applied 
e vertical walls. Measured temperatures and void fractions 

fferent locations showed interesting boiling phenomena and 
anisms of two-phase natural convection.  

el predictions were successful in predicting the first kind of 
erature jumps observed during experiments. Numerical 
lems were however encountered in attempting to simulate 
uick transition from slight subcooled to volumetric boiling 

resulted in the second kind of temperature jumps.  
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