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Abstract

Using the Galerkin Finite Element Technique, a numerical code
to study groundwater systems is being developed. This code
has been applied to the Gauss Pulse Test to determine the ac-
curacy of a number of solution schemes: in particular, which
value of theta in the numerical time step theta algorithm gives
the most accurate solution of the two-dimensional advection–
diffusion equation. The theta algorithm enables time stepping
to be performed explicitly (θ = 0), implicitly (θ = 1) and any
combination thereof (0 < θ < 1).

Whilst the Gauss pulse test is a benchmark problem for assess-
ing advection–diffusion type equations, it has predominantly
been used to assess finite difference methods. Here however,
it is used to evaluate a finite element scheme. A brief overview
of the code is given, and various results for the Gauss pulse test
discussed.

Introduction

Water is one of the most important resources to the continu-
ing development of South Australia: in particular, groundwa-
ter, which is often the only source for drinking and/or irrigation
water. To manage this resource properly, and prevent both the
onset and spread of dryland salinity due to rising groundwater
levels, it is important to be able to accurately predict how the
system behaves.

In part this can be achieved through the use of numerical mod-
els which can simulate the system and how it responds to
groundwater withdrawal, surface water injection and changes
in recharge. It is then possible to simulate the system under the
conditions of proposed management plans, enabling the effec-
tiveness of each plan to be ascertained.

It is of paramount importance that any numerical code to be
used in the study of a physical system be first shown to accu-
rately solve those equations governing the system of interest.
The system to be simulated using the code discussed in this pa-
per is the groundwater aquifer beneath Padthaway in the South
East of South Australia. A rising groundwater table and subse-
quent increasing levels of salinity have created the need for a
management tool capable of determining the effects of current
and future groundwater practices on the groundwater system.
In terms of numerically modelling the movement of salt within
the aquifer, this requires the accurate solution of an advection–
diffusion type equation.

Whilst there are a number of commercial and public domain
codes available for solving such an equation, the code de-
veloped by the authors is also suitable for solving the two–
dimensional, density–dependent groundwater flow and solute
transport equations, for which there are very few codes [8]. Fur-
thermore, of these few suitable codes, the user generally does
not have the ability to access the source codes to evaluate the
solution techniques applied within the code.

The aim here is to determine the most accurate and most appro-
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solution technique available within an especially devel-
numerical code so that upon application to the Padthaway
dwater system, the accuracy of simulation results is more
d.

umerical Code: SATFAT

the Galerkin Finite Element Technique, a numerical code
lve the flow and solute transport equations for fluids in
s media has been developed. The code is called SATFAT;
onym for SATurated Flow And Transport. It has a number
ution options including mass lumping, and direct and iter-
matrix inversion, and uses the theta algorithm [1] for the
tisation of time. Having the ability to control the solution
ss allows the user to determine the effect of the solution
ique on results. Thus, it is possible to objectively evaluate
s solution options.

t matrix inversion is achieved using the sparse–matrix in-
n routine GELB [2], and the Gauss–Seidel method used
rative inversion. The latter is of several orders of magni-
aster than the former in most cases. Mass lumping is the
ique of lumping mass at the nodes of an element so that

e derivative applied over the element is only discretised
h node. This process is of significant benefit in that it diag-
es the global mass matrix making it more robust to invert.
iewicz and Taylor [11] present a number of procedures to

ve this.

AT is being developed to solve constant and variable den-
ersions of the governing equations for fluid flow and so-
ansport through porous media. To model the Gauss pulse
] it is necessary to only solve the constant density solute
ort equation, which in this case can be simplified to the
tion–diffusion equation

∂ω
∂t

+u
∂ω
∂x

+ v
∂ω
∂y
�αx

∂2ω
∂x2 �αy

∂2ω
∂y2 = 0; (1)

ω is the solute mass fraction, u and v are the velocities
, and αx and αy [m2/s] the diffusivities in the x- and y-
ions respectively.

ing the method of weighted residuals to equation (1), and
the Galerkin technique with bi–linear quadrilateral ele-
yields the following elemental expression

Aω+B
∂ω
∂t

= 0; (2)

and B representing coefficient matrices that are obtained
integrating the appropriate element arrays. Derivations of
matrices can be found in Narasimhan [3] and Pinder and
[7]. A finite difference approximation is used to discretise

hich after application of the theta algorithm yields:

ωn+1 = (B=∆t+Aθ)�1((B=∆t�A(1�θ))ωn); (3)

θ = 0;0:5;1 correspond to the explicit, Crank–Nicolson
cit (CNI) and implicit methods respectively. It has been



shown by Giraldo and Neta [1] that such schemes are condi-
tionally stable for values of theta in the range (0 � θ < 0:5),
and unconditionally stable for (0:5� θ� 1). Here the aim is to
assess accuracy as a function of θ.

To determine how accurately SATFAT solves the advection–
diffusion equation, it has been applied to the Gauss pulse test.

The Gauss Pulse Test

The Gauss pulse test has been extensively used to assess the
accuracy of finite difference schemes in solving the advection–
diffusion equations in one dimension [4, 10] and two dimen-
sions [5, 6]. Truscott and Turner [9] applied the Gauss pulse
test to a control volume finite element method with moderate
success. For the two-dimensional case, the advection-diffusion
equation (1) with constant u;v;αx and αy is solved in the rect-
angular region 0 < x < X , 0 < y < Y , for 0 < t < T .

The exact solution to this problem is given by Noye [6] to be

ω(x;y;t) =
1
τ

exp

�
�

φ(x;t)
αxτ

�
ψ(y;t)

αyτ

�
; (4)

where τ= 4t+1, φ(x;t)= (x�ut�xc)
2, ψ(y;t)= (y�vt�yc)

2,
for the case with initial condition ω(x;y;0), and boundary con-
ditions ω(0;y;t);ω(X ;y;t);ω(x;Y;t) and ω(x;0;t). Physically,
the initial condition describes a two-dimensional Gauss pulse
of height 1m centred at (xc;yc) = (0:5m;0:5m).

The 2D projections of the initial pulse and the resultant pulse
after t = 1:25 seconds are shown in figure 1.
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Figure 1: 2D projections of the initial (left) and resultant (right)
pulses after t = 1:25s.

The coefficients of the diffusion terms are chosen to be αx =
αy = 0:01 m2/s and the flow is uniform in both the x- and y-
directions at u = v = 0:8 m/s. After a period of t = 1:25 sec-
onds the pulse has travelled to a position centred at (x;y) =
(1:5m;1:5m) and has reduced in height to 1/6m. The reduc-
tion in peak solute concentration is due to diffusion whilst the
change in location of the peak is due to advection.

Application of SATFAT to the Gauss Pulse Test

The Gauss pulse was simulated using the constant density so-
lute transport option within SATFAT. For the purpose of com-
parison, the solution domain was restricted to X =Y = 2m with
a grid spacing of 0.025m in both the x- and y-directions. This
corresponded to a square grid of 80 x 80 elements with bi–linear
interpolation functions. A total of 125 time steps of equal du-
ration of 0.01 seconds were used to give a simulation time of
t = 1:25 seconds. Solution options examined were matrix in-
version, mass lumping and the value of theta.

Table 1 gives the various options used for each solution scheme,
and the height of the Gauss pulse after t = 1:25 seconds.
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ef. Inversion Mass Lumping θ Peak

G1 direct no 0.00 0.192m
G3 direct yes 0.00 0.193m
G4 iterative yes 0.00 0.193m
G5 direct no 0.25 0.177m
G7 direct yes 0.25 0.178m
G8 iterative yes 0.25 0.178m
G9 direct no 0.50 0.166m
11 direct yes 0.50 0.167m
12 iterative yes 0.50 0.167m
13 direct no 0.75 0.148m
14 iterative no 0.75 0.148m
15 direct yes 0.75 0.149m
16 iterative yes 0.75 0.149m
17 direct no 1.00 0.134m
19 direct yes 1.00 0.136m

1: Solution options and Gauss pulse peak height for each
solution schemes. The exact solution gives a pulse of

t 1/6m.

that G2, G6, G10, G18 and G20 have been omitted as in
case the matrix to be inverted wasn’t diagonally dominant
rative inversion wasn’t used.

s Pulse Test Results

-sections of pulse height through the y=1.5m transect are
n in figures 2, 3, 4 and 5. The cross-sections are grouped
ding to the solution options of matrix inversion and mass
ng. For each group it is then simple to identify which
of theta (0, 0.25, 0.50, 0.75 or 1.00) gives the most ac-
solution. Contour plots of resultant pulse height (solute

ntration) for a selection of the solution schemes are shown
ure 6.

l schemes, the location of the peak after t = 1:25 seconds
ither at (1.5m,1.5m) or within 0.025m of this. Any numer-
ispersion introduced by the code is evident in the uneven
ion of the Gauss pulse, and can be observed in figure 6(b),
) and (f). Numerical dispersion refers to the apparent dis-
n of the solute due to numerical error in approximating
act equation (1) with difference equations. In finite differ-
, it has been shown to be a function of time step size and
ity [6], and can be minimised by balancing the magnitude
time step with the velocity of the flow.

running all schemes using 125 time steps of 0.01 seconds,
found that to attain a stable solution for the explicit and

explicit schemes G1-8, it was necessary to increase the
er of time steps to 250, with the requisite decrease in the
itude of the time step. By comparing the time taken for
olution scheme, the expectation that the iterative schemes

considerably faster than the direct inversion was confirmed
rall, the direct inversion schemes took some twenty times

r than the iterative schemes.

given value of theta and choice of mass lumping, the re-
or the Gauss pulse test using iterative inversion were com-
le with those using direct inversion. This is shown in ta-
when comparing G3 with G4, G7 with G8, G11 with G12,
o on. The small differences observed can be eliminated

ply increasing the number of iterations for the iterative
ion routine at each time step.

own in figure 2 and table 1, the ranking of accuracy of the
ass lumped, direct inversion schemes in terms of peak

t is G9,G5,G13,G1,G17.
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Figure 2: Cross-sections for schemes using exact inversion and
no mass lumping (G1,G5,G9,G13,G17) compared with the ex-
act solution.

Of these the most accurate is the CNI scheme (θ = 0:5). This
scheme also exhibits the least dispersion, with the fully implicit
and explicit schemes G17 and G1 exhibiting the most disper-
sion.
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Figure 3: Cross-section for the non-mass lumped scheme using
iterative inversion (G14) compared with the exact solution.

The only non-mass lumped scheme that could utilise iterative
inversion was the near implicit scheme G14. This produced
a peak height of 0.148m; its contour plot was very similar to
that of scheme G13 shown in figure 6(e) indicating numerical
dispersion. As discussed above, G14 was the only case where
the coefficient matrix was diagonally dominant, indicating that
although mass lumping is numerically questionable it does lead
to a more robust and invertible matrix [11].

Of the mass lumped schemes using direct inversion, the CNI
scheme G11 was the most accurate. The ranking of accuracy
of these schemes was G11,G7,G15,G3,G19. There was very
little difference between the non-mass lumped and mass lumped
schemes using direct inversion for a given value of theta, other
than a small increase in the height of the Gauss pulse for the
mass lumped schemes. The numerical dispersion exhibited in
each of these schemes was comparable to that exhibited in the
equivalent non-mass lumped schemes.

Results for the Gauss pulse test with θ = 0:5 from SATFAT are
more accurate than those developed by Truscott and Turner [9]
using a control volume finite element method, and compare
favourably to those published by Noye [6] using high–order
fully implicit finite difference schemes. Additional results for
the Gauss pulse test using alternative values for the velocities u
and v, and diffusion terms αx and αy have yielded a similar pat-
tern of accuracy in terms of θ and choice of inversion routine.
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e 4: Cross-sections for schemes using exact inversion and
lumping (G3,G7,G11,G15,G19) compared with the exact
on.
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e 5: Cross-sections for schemes using iterative inversion
ass lumping (G4,G8,G12,G16) compared with the exact

on.

lusion

ost accurate results in terms of both the height and loca-
f the Gauss pulse peak were found to be those using the
θ = 0:5) schemes. This was irrespective of choice of ma-
version or mass lumping. The CNI schemes also exhib-

he least numerical dispersion, with the non-mass lumped
e the best.

t there is only a small difference in results between
es using direct and iterative inversion, the substantial but
expected increase in computational time for direct inver-

chemes over those using iterative inversion, makes the lat-
ore suitable choice where iterative inversion can be used.

e CNI scheme this implies the need for mass lumping to
e the mass matrix is diagonally dominant.

analysis has shown that using techniques other than the
cheme produces errors up to approximately 20% because

merical dispersion. This can have significant implications
ms of assessing management alternatives for the Padth-
groundwater system, and any other areas to which this or
r codes are applied. In practice, the choice of values for

parameters as αx and αy can have dramatic effects upon
lling results. However, having the ability to accurately
the governing equations enables the modeller to apply a
of inverse techniques in helping choose parameter values,
ultimately allows for a more useful management tool.

nclusion, model results of the Gauss pulse test show the
accurate solution scheme to be the non-mass lumped, CNI
e.
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Figure 6: Contour plots of the exact solution and the solution schemes G1,8,9,13,17 showing isolines of 0.15 (where applicable), 0.12,
0.10, 0.075, 0.05 and 0.01m in order of increasing radius.
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