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Abstract  The key to the numerical solution of three 
dimensional convection problems is to search for a 

high-precision interpolating function, which can keep the 

result stable and damping low. Based on the consistence 

hexahedral element method, an advanced 

quasi-consistence hexahedral element method for 

three-dimensional convection problems is developed in 

this paper. The flow domain is discretized into arbitrary 

hexahedral elements, which do not change with time. A 

cubic polynomial based on three-dimensional Cartesian 

coordinates (x,y,z) is adopted as the element interpolating 

function to ensure that variable functions and their first 

derivatives over the entire domain are continuous. The 

verified results show that this algorithm is more precise 

than other methods. 

 
Introduction 

The convection-diffusion equation is the main type 
of governing equations in fluid mechanics. It is composed 
of convection operator equation and dispersion operator 
equation and it belongs to the hybrid operator equation. 
Many numerical methods are presented by many 
researchers to solve convection-diffusion problem due to 
their importance in fluid mechanics (Holly and 
Preissmann 1977, Sobey 1983, Ding and Liu 1989). They 
try to find out a numerical method for 
convection-dispersion problems that is of high precision 
and good stability. However, there are many difficulties to 
be solved due to the non-linearity of the equation.  

The convection operator is the nonlinear part of the 
convection-diffusion equation that usually results in large 
numerical damping and oscillation. So it is necessary to 
seek an algorithm for three dimensional pure-convection 
problems to minimize numerical damping and oscillation. 
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 comparison of three finite difference methods, 
EST, ULTIMA and ENO schemes, was made by 
a et al (1990) for the one dimensional pure 

ction equation with benchmark examples, but it is 
difficult to be extended to three dimensional 
ms. A cubic polynomial function for the two 
sional pure convection equation based on arbitrary 
e element meshes was developed by Ding 
ng et al (1989) and extended to three dimensional 
ms on the basis of tetrahedron element meshes 
and Liu 1992). However, the stability of this scheme 
poor. Later, a consistence hexahedral element 
d for three dimensional convection problems was 
ted (Ding, Wu and Liu 1997). A cubic polynomial 

dopted as the element interpolating function which 
ed C, Cx , Cy , Cz , Cxy , Cyz, Czx and Cxyz  of each 
of the elements. Numerical damping and oscillation 
almost avoided in this way. However, more time 
 be needed to obtain the result because of too 
computational work. 
onsequently, a new quasi-consistence hexahedral 
nt method for three dimensional convection 
ms is developed in this paper, which only includes 
antities of C, Cx, Cy and Cz of each node of the 
nts. Verification of the algorithm is performed by  
f a Gauss-distributed concentration ball at steady 
 an open channel. A comparison with an analytical  
n shows that the precision and stability of this 
hm are as good as those of the consistence 
edral element method, and better than those of the 
interpolating function method. 

rning equation and initial/boundary 
itions 
ree dimensional pure convection equation can be 
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where C denotes the concentration of a convection 

substance, and u,v,w represent  flow velocity 

components in (x, y, z) directions, respectively. 

    The solution to the concentration is sought in a 

region R with boundaries Γ . The initial condition is 

specified as 

   C , in R and on      (2) )0,,,()0,,,( 0 zyxCzyx = Γ

Two types of boundary conditions are used. Along the 

inflow boundaries , the relation between concentration 

and time is  

1Γ

    , along          (3) ),,,(),,,( tzyxftzyxC = 1Γ

Along the outflow boundaries , the normal derivative 

of the concentration is given, i.e. 
2Γ

     ∇ , along            (4)  ),,,( tzyxgnC =⋅ r
r

2Γ
where  represents the unit outward normal along 
boundary . If g=0, boundary  represents a solid 

boundary and Eq.(4) indicates the absence of flux. 

n
2Γ 2Γ

 
Numerical procedure 
    The method of characteristic line, which is the most 
suitable numerical scheme, is adopted to solve the 
convection equation. There are two tasks to be performed 
to find the concentration at all element nodes for 

. The solution procedures are: (1) to find 

the location of an interior point D from which a 
characteristic line travels to the vertex of the same 
element M during time interval . 

The concentration at point M for t  is the 

same as that at point D for . (2) to calculate  
the concentration at point D for . 
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    The characteristic line connecting points M and D 
can be expressed as:  
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The location of point D for can be found by 

numerical integration of Eq.(5) . Because the location of 
point D is unknown in advance, an iterative scheme is 
needed. However, if the time step and the element sizes 
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ufficiently small, the velocity components can be 
ximated as linear functions with time. Eq.(5) can be 
 approximately as: 
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 subscripts ”M” and “D” denote the quantities at 
 M and D respectively, and superscript “n” 
ents the time level . tn∆
, y, z) are indicated as the local coordinate for a 
edral element. The concentration at an interior 
s approximated as a cubic polynomial: 

       (7) 
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 , , …,and  are coefficients to be 

ined. To determine the 32 unknown coefficients, 
ncentration and its first derivatives at each node in 
lement are treated as known quantities.  

1a 2a 32a

he governing equations for derivatives of the 
ntration can be obtained through derivatives of Eq. 

or example, to find the equation for x
C

∂
∂  one 

the derivative of Eq.(1) with respect to x. Thus 

0)(
z

w)(
y

v)(
x

u)(
t

=
∂
∂+

∂
∂+

∂
∂+

∂
∂

x
C

x
C

x
C

x
C

∂
∂

∂
∂

∂
∂    (8) 

haracteristic lines for x
C

∂
∂  are the same as 

for C, which have been determined. Eq.(8) can be 
ted directly from point D (when ) to point 

hen t ). Similar equations can be 

ed for other derivatives.  
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erical examples 
 illustrate the accuracy of the present algorithm, 
ical results are obtained for the transport of an 
taneous point source in a uniform flow. The 



computational domain is defined as , 0

≤y≤800m, and 0≤z≤800m. The fluid moves in x-direction 
with a speed of 0.5m/s. The element network is an 
irregular mesh with an average mesh size of 100m (Fig.1). 
There are 4608 hexahedral elements with 5913 nodal 
points. The initial condition is given as 

mx 72000 ≤≤

   C x  y z x x y y z z
0

0
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0
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22

( , , ) exp[
( ) ( ) ( )

]= −
− + − + −

σ

where (x0=1200m, y0=400m, z0=400m) are the 
coordinates for the center of initial concentration 
distribution, and σ0=264m characterizes the size of  

concentration. In numerical computations, the no-flux 
boundary condition is applied to lateral boundaries. The 
Dirichlet boundary conditions(C=0) are used on both 
open boundaries. The time step =48s is used. ∆t

To check the effect of different interpolation 
functions in the characteristics method on the solution, a 
comparison of linear function, consistence and 
quasi-consistence hexahedral element methods is 
performed. Numerical results for different time are shown 
in Figs.2~4. The curve of peak values from three 
methods is shown in Fig.5. The agreement between 
numerical solutions of consistence and quasi-consistence 
hexahedral element methods and analytical solution is 
quite good, but the result of linear function has large 
numerical damping and the solution is seriously distorted. 
However, the present algorithm avoids solving 64×64 
linear equations at every time step .The consistence 
hexahedral element method only needs 1/50 computer 
time. 

The result for the effect of different element sizes on 
the solution for T=9 600s is shown in Fig.6. Again the 
numerical damping of the consistence and 
quasi-consistence hexahedral element methods is the 
same, but lower than that of linear function.  

The comparison of the results for σ0=264m and 

528m is shown in Fig.7. The smaller the variable gradient 
is, the smaller the numerical damping . For variables with 
a larger gradient, a high-precision interpolating function, 
such as quasi-consistence hexahedral element method, 
is naturally necessary to be adopted to obtain physical  
solution. 
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Fig.1 Sketch of computational mesh 
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Fig. 2 Calculation of 3D convection for T=2 400s 
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Fig. 3 Calculation of 3D convection for T=4 800s 
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Fig. 4 Calculation of 3D convection for T=9 600s 
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   Fig.5  Maximum value comparison of three methods 
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Fig. 7 Calculation of 3D convection for different ,for T=4 800s 
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Conclusions 

An advanced quasi-consistence hexahedral 
element method for three dimensional convection 
problems is developed. Comparisons of this method with 
linear interpolating function method and with consistence 
hexahedral element method are made. The verification of 
the algorithm is performed by the use of a 
Gauss-distributed concentration ball at steady flow in an 
open channel. The comparison with an analytical solution 
shows that in precision and stability the 
quasi-consistence hexahedral element method is as good 
as the consistence hexahedral element method, and 
better than the linear interpolating function method. For 
variables with a larger gradient, a high-precision 
interpolating function, such as the quasi-consistence 
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edral element method, is naturally necessary to be 
d to obtain physical solution. Indeed, it is difficult to 

the quasi-consistence and consistence hexahedral 
nt methods to engineering practice because of the 
erly posed boundary conditions for variables and 
erivatives.  
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