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Abstract

In this study the dynamic Smagorinsky model (DSM) has
been incorporated into a spectral element method and
applied in a large eddy simulation (LES) of a turbulent
channel flow. The dynamic procedure estimates the pa-
rameter of the Smagorinsky model (SM), thereby allow-
ing for an adaption of the mixing length to the local tur-
bulent state during the simulation. As expected, strong
fluctuations of the dynamic estimate arise which are due
to the local nature of the model. To avoid any adverse
influence to the convergence of the numerical scheme,
most of these fluctuations are dampened out by averag-
ing along the spanwise (homogeneous) direction and in
time. Two different test filter kernels have been used
in order to assess the quality and the robustness of the
dynamic procedure and shed light on the dependency of
the whole model on the test filter. The simulation results
provide a good overall agreement with both experimental
data and previous LES results, obtained with the fixed-
constant Smagorinsky model.

Introduction

The successful application of LES to typical turbulent en-
gineering flows depends to a large extent on the quality of
the turbulence (i.e. subgrid-scale) model. Although much
effort has been devoted to the development of improved
subgrid-scale models, the majority of all LES still use a
simple algebraic model (i.e. Smagorinsky model), because
it has some striking advantages: it is computationally
cheap, robust and often gives as good results as more
complex models for a large variety of flows. However,
it includes a model parameter which has to prescribed
in advance and for complex flows, which are present in
industrial applications, no unique value can be found.
In addition, ad hoc modifications to the model param-
eter are required close to solid boundaries (“van Driest
damping”, vDd).

The dynamic procedure, first introduced by Ger-
mano et al. [2], bypasses theses problems since it is able to
determine a local estimate of the mixing length, depend-
ing on the local state of the flow. This procedure, com-
monly known as the “dynamic model”, has been success-
fully applied to many flows, mainly with finite-difference
or finite-volume methods. Little is known of the applica-
tion of the dynamic model in conjunction with spectral
element methods [4, 6], although they are well-suited for
LES, because of their highly desirable inherent numerical
properties such as low dissipation and diffusion.

In previous work [1], we have described the application
of the non-dynamic Smagorinsky-based spectral element
LES to the turbulent channel flow with Rec = 13 800
(Reτ = 640). The present paper documents the imple-
mentation of the dynamic model within the spectral
element framework and shows results of the success-
ful application to the same flow. The channel flow
was chosen for validation purposes, although the cur-
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ormulation is not restricted to any type of geometry.

Methodology

weakness of conventional (Reynolds-averaged
r–Stokes, RANS) turbulence simulations, with uni-
l models and a limited set of parameters, has pro-
d the use of LES. In order to reduce the influence of
urbulence model, the large scale structures, which
most of the kinetic energy, are directly resolved by
rid. Since these large scales are dominated by ge-
rical constraints and boundary conditions, any ini-
rientation of turbulent structures gets lost during
nergy cascade from large to smaller scales. There-
the small-scale turbulence is expected to behave
isotropically, without any preferred orientation and
d consequently be much easier to model than the
spectrum of turbulence.

a mathematical point of view, LES can be thought
a convolution of the exact turbulent velocity field u
a filter kernelK that gives the resolved scale velocity
u,

u (r) =

∫
K
(
∆, |r − r

′|
)
u (r′) d3

r
′. (1)

e ∆ is the filter length, which is usually be taken
the grid size. The filtering operation is implicit in
ormulation (i.e. not explicitly carried out). Under
ptions which are generally non-restrictive, filtering

differentiation commute, i.e. ∂u/∂x = ∂u/∂x. If
is applied to distorted meshes, besides other numer-
rrors, an additional commutation error arises.

uation for u is obtained by convolving the Navier–
s equations with the same spatial filter function,

∂tu+∇·uu = −∇P + ν∇2
u , (2)

e P = p/ρ for incompressible flows. As in conven-
l turbulence modelling, the nonlinear terms are have
modelled, because the they cannot be expressed in
of the known resolved components u. To overcome
roblem, a subgrid-scale stress τ is introduced (in a
r way to RANS modelling), such that τ = uu−uu.
omentum equation then becomes

∂tu+∇·uu = −∇P + ν∇2
u−∇·τ . (3)

urbulence modelling task is to estimate the subgrid-
stress τ from the resolved velocity field u.

mic Subgrid-Scale Model

S, all length-scales of turbulence down to a cut-
avenumber kc are explicitly resolved, while the in-
e of the smallest scales down to the Kolmogorov
pation) length η = (ν3/ε)1/4, are simulated by a



subgrid-scale model. By assumption, the maximum re-
solved wavenumber resides within the inertial subrange,
where the kinetic energy scales with k−3/5. In this region,
turbulent kinetic energy is basically transported from
large to small scales without any other effects like turbu-
lent production or dissipation. At the cut-off wavenum-
ber, the smallest resolved scales behave like the largest
unresolved (subgrid-) scales of motion and consequently,
their mixing-length should be similar. Therefore they
should be able to be described with the same model with
one model parameter. Applying a test filter at a lower
cut-off wavenumber kf enables us to resolve the turbu-
lence on both sides of this border. The assumption, that
the behaviour at kf and kc are comparable, is the basis
of all dynamic procedures.

Test Filters

The first task in constructing the dynamic procedure is to
define and apply a test-filter to equation (3). For compar-
ison, we used two different explicit test filters, to inves-
tigate the influence of the filter function to the dynamic
procedure and the flow prediction. Both filters only dif-
fer in the (x, y) plane, while the same spectral (Boyd-
Vandeven [7]) Fourier filter is employed in the spanwise
direction (z).

The first type of filter employs a spectral-projection tech-
nique. Filtering is done via elementwise projection of
data from the space of Lagrange polynomials based on
the Gauss–Lobatto (GL) points for the resolved mesh
(here, order Np=8) to a set order Np/2, i.e. to a coarser
GL mesh. The second discrete filter is a top-hat filter op-
erating in physical space. This type of filter is typically
used in finite-volume methods and is defined as (for 1-D)

φi =
1

6
(φi−1 + 4φi + φi+1) , , (4)

where i− 1, i, and i+ 1 represent successive collocation
points of the GL mesh. On a uniform mesh, the equiv-
alent kernel is a box in physical space, having twice the

length of the grid filter ∆̃ = 2∆. This filter is applied
elementwise without exchange of information at element
boundaries. Figure 1 shows how both filters work on an
initial field (1a). The spectral-projection filter (1b) re-
tains some additional details of the flow compared to the
top-hat filter (1c).

Dynamic Procedure

Applying a second filter with an associated size of ∆̃ to
the filtered Navier–Stokes equations (3) leads to a similar
stress tensor on the test-filter level T

∂tũ+∇·ũ ũ = −∇P̃ + ν∇2
ũ−∇·T (5)

with T = ũ u− ũ ũ . (6)

Assuming similar physics underly both stresses τ and T ,
they can be modelled with the exactly the same model.

Filtering of τ gives τ̃ = ũ u− ũ u in which the first term
on the r.h.s. matches the one in equation (6) and can
therefore be eliminated, leading to the relation known as
“Germano’s Identity”

L = T − τ̃ = ũ u− ũ ũ , (7)

which can be used with any stand-alone subgrid-scale
model—all terms, except model parameter can be evalu-
ated. For simplicity, we employ the Smagorinsky model

τ = −2 νt S with νt = (Cs∆)2 |S| and |S| = tr(2S
2
)1/2.

(a)

(b)

(c)
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e 1: Test filters applied to initial field (a): spectral-
ction filter (b) and top-hat filter (c).

erivation of the dynamic procedure for estimation
e model parameter follows Lilly [8], which is nu-
ally more stable than the original formulation [2].
lling of τ and T gives

= −2 (Cs∆)
2 |S|S , T = −2 (Cs ∆̃)

2 |S̃| S̃ (8)

pplied to equation (7) this results in the quantity

L = −2 (Cs∆)
2
M (9)

M =
(
∆̃/∆

)2

|S̃| S̃ − ˜|S|S , ∆̃/∆ = 2 . (10)

er to obtain one dynamic estimate, the tensor equa-
9) is reduced by double contraction, leading to

L : M = −2 (Cs∆)
2
M :M , (11)

which the dynamic estimate can be derived

(
Cs(x, y, z, t)∆

)2
= −

1

2

〈L:M〉z
〈M :M〉z

. (12)

procedure evaluates a local and time-dependent
of Cs and is updated every time step. Note that
roduct (Cs∆) is treated as a mixing length LMix,
ut explicitly specifying the length scale on the grid
∆.

lity problems usually force the use of spatial aver-
along homogeneous directions (x, z) to limit the
ations of the model parameter. However, in the
el simulations we have only applied a spanwise av-
g (as indicated by the z subscript in equation 12),
ep the implementation as general as possible. Note
the averaging is applied separately to the numera-
d denominator of equation (12) before constructing
ynamic estimate. Additional time-averaging, using
ning average

L
2 (n)
Mix = εL2

Mix + (1− ε)L
2 (n−1)
Mix (13)



with ε in the range of ε = 0.01 − 0.10 reduces transient
fluctuations and enables us to assess the quality of the
model parameter after it has statistically converged. Fur-
ther, clipping of the effective viscosity νT = νt + ν to
eliminate negative values prevents large negative values
of the eddy viscosity contaminating the solution, which
could lead to convergence problems.

Numerical Method

The spatial discretisation employs a spectral element–
Fourier formulation, which allows arbitrary geometry in
the (x, y) plane, but requires periodicity in the z (out-
of-plane) direction. The basis of the method as applied
to the direct numerical simulation of the incompressible
Navier–Stokes equations has been described by Karni-
adakis & Henderson [4]. The nonlinear terms of (3)
have been implemented in a skew-symmetric form, i.e.
(u · ∇u + ∇uu)/2, as this has been found to reduce
aliasing errors [10]. These aliasing effects contaminate
the resolved spectrum and usually lead to higher values
of velocity fluctuations.

The method described in [4] requires modification in or-
der to deal with the ∇·τ terms in (3). The approach
taken here follows that outlined in [1, 5], where the sum
of the molecular and turbulent eddy viscosities νT =νt+ν
is decomposed into a spatially-constant component νref

and a spatially-varying component (νT −νref). The value
of νref is chosen to be approximately equal to the max-
imum value of νT . This value is not known a priori,
but νref can be adjusted during the computation with-
out any adverse effects. When solving (3), the term

∇·(νT − νref)
[
∇u+ (∇u)t

]
is treated explicitly, while

the term νref∇
2u, is treated implicitly, thus enhancing

the overall numerical stability of the scheme.

As a result of the Fourier decomposition, implementation
of the time integration as a parallel algorithm is straight-
forward, with inter-process communication required only
during formulation of the nonlinear terms in (3). The
message-passing kernel MPI has been used for this oper-
ation, and the computations reported here were carried
out using 8 processors. In order to drive the flow in the
streamwise (x) direction, a body force per unit mass of
magnitude 2τw/ρ was applied in the appropriate term in
the filtered N–S equation.

Figure 2: Two-dimensional section of 60-element mesh.
The upper half of the mesh shows spectral element
boundaries, the lower half shows the element nodes for
8× 8 tensor-product shape functions.

Mesh parameters

For comparison with previous non-dynamic LES calcu-
lations, the same mesh as in [1] was used. The domain
is spatially periodic in the streamwise and spanwise di-
rection. The domain size was set to Ly = 2δ in the wall
normal direction, Lx = 2πδ in the streamwise direction
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z = πδ in the spanwise direction. The mesh con-
of 60 elements (see figure 2), each discretized by 8×8
r-product shape functions leading to mesh sizes of
' 50–100, ∆z+ ' 15–40 while the first mesh point
from the walls was located at y+ < 1. Using 64
s of data in the z direction, the mesh has a total of
40 nodes.

lts

ure 3, the mean velocity profiles are displayed in
nits: u+=u/uτ , y

+=y uτ/ν. For comparison pur-
the experimental results of Hussain & Reynolds [3]

c = 13 800, (Reτ = 640) and LDA measurements
ei & Willmarth [9] at slightly higher Rec = 14 900
= 708) are shown, along with a ‘Law of the Wall’
which uses u+ = 2.5 ln y+ + 5.0 in the logarithmic
n.

Figure 3: Mean velocity profiles.

results obtained with the dynamic model using the
ypes of test filter are quite distinct. The spectral-
ction filter achieves good agreement with the experi-
al values [3, 9] and the “best-fit” Smagorinsky model
CS = 0.12, whereas the top-hat filter overshoots
ata by a constant value in the logarithmic region
30). Apparently, the choice of the test filter has
pact on the results. It should be emphasized that
er to get reasonable results from the non-dynamic
orinsky model (shown as SM in figure 3), the con-
CS has to be known in advance, and in addition, ad
an Driest damping must be incorporated near the
. As expected, LES with no model contribution fails
roduce the correct velocity distribution in the loga-
ic region of the channel, confirming the importance
ting the model parameter correctly.

ure 4, the profiles of the rms-values of the velocity
ations are shown with experimental data [3, 9] and
ous LES results [1] for comparison. All computed
mwise fluctuations somewhat exceed the experimen-
vels, which display marked variation between mea-
ent sets. The dynamic model with the spectral-
ction filter gives similar results to the Smagorinsky
l, besides predicting the stress peak closer to the
(in agreement with experiment). The top-hat filter
stimates the streamwise fluctuations, while agreeing
nably well for other values. The LES without any
l clearly fails to correctly capture the anisotropy
e velocity fluctuations, as it produces the largest
normal and spanwise fluctuations. As shown in



Figure 4: Mean rms-values of the velocity fluctuation.

Figure 5: Mean shear-stress profiles.

figure 5, all profiles approach the linear distribution of
the total shear stress, indicated by the dotted line. The
Smagorinsky model predicts the lowest level of resolved
shear-stress, while the dynamic models give marginally
larger values, besides a slight difference of both dynamic
solutions.

For comparison with the fixed-constant Smagorinsky
model, the value CS can be reconstructed from the time-
averaged mixing-length profiles using the same mesh size
∆ as employed in the Smagorinsky model. As can be seen
from figure 6, the spectral-projection filter gives a signif-
icantly lower value than the top-hat filter. The fact that
the tailored Smagorinsky model with CS =0.12 and the
dynamic model with the spectral-projection filter give the
best results, confirms that the correct level of CS should
be in the range of 0.06−0.12. Both filters used in the
dynamic procedure correctly switch off the model at the
wall, as expected. Due to the local nature of the model,
the dynamic estimate varies in each element, while giving
an overall symmetric distribution over the channel. Ap-

Figure 6: Profiles of the dynamic model parameter CS .
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tly, negative values of the model constant do not
st in the time-average, although negative values do
during the simulation.

lusions

ynamic Smagorinsky model has been implemented
spectral element method and successfully applied
ulation of a turbulent channel flow. The results

good agreement with reference data and are obvi-
affected by the test filter function applied within
ynamic procedure. The reason for the differences
e dynamic model solutions might be caused by the

length-scale ratio (∆̃/∆)=2, which is used by both
, although they obviously act differently on the re-
d flow field. The dynamic procedure implicitly gives
odel values at the wall as required and the general
mentation retains the applicability of the method
mplex geometry turbulent flows.
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