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Abstract

The problem of steady flow of an electrically conducting
incompressible newtonian fluid through a channel with a porous wall
has been solved by using perturbation method. The behavior of the
velocity profile for different values of Hartmann number and slip

coefficient is shown graphically.

Introduction

Parallel plate membrane modules consisting of a channel bounded by
two porous walls are used for filtration. Berman [2] first derived
approximate expressions for fluid velocity components for flow in
such a module assuming a sufficiently small Reynolds number and
no slip at the porous walls. Beavers and Joseph [1] proved the
existence of a non-zero tangential velocity on the surface of a
permeable boundary. Singh and Lawrence [7] investigated the fluid
mechanics in parallel plate filtration system assuming equally porous
boundaries. The problem of steady flow of an electrically conducting
incompressible non-newtonian second order fluid through a channel
with porous walls has been studied by Sharma and Singh [6]. Recent
works include Kuiry [4] where the steady behavior of a generalised
porous wall “Couette Type ” flow in the presence of a magnetic field
has been discussed. Most laboratory scale parallel plate filters are
asymmetric having only one porous wall, the other wall being solid.
Such a geometry is convenient for conducting experiments, for
permeate collection etc. A geometry of this kind is applicable in the
case where membrane filtration helps to separate plasma and cellular
components from the whole blood. Recently Chellam et al. [5] has
derived an approximate solution for the two dimensional Navier-
Stokes equations for steady, laminar flow in a channel bounded by
one porous wall subject to uniform suction. The flow of an
electrically conducting fluid between porous boundaries is of
practical interest in problems of gaseous diffusion etc. Hence an
attempt is made to study the effect of magnetic field on the flow
problem discussed by [5]. As this requires a knowledge of the details
of the flow, as a first step the velocity both in the axial and transverse

directions are plotted for different physical parameters.
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Mathematical Formulation
Consider the steady flow of an incompressible fluid in a channel with

one porous wall as shown in figure 1.

Figure 1. Schematic diagram of the channel

Let L and 4 denote the length and height of the channel respectively.
A constant magnetic field By is applied normal to the axis of the
channel. The flow is modeled as a two-dimensional one assuming
that the width of the channel is very large compared to its height. Let

pand v denote the fluid pressure and kinematic viscosity

respectively. If the induced magnetic field due to the flow is
negligible and the velocity in the axial and transverse directions are
u and v respectively then the simplified differential equations of
motion and continuity governing the flow along with the boundary

conditions are given by

Ju v du 1 op %2y 1 9% By“o
to—=—— vV +—

U— —=—— - u (1)

2 2
Mﬂ_{_li:_La_p_{_v Q.FLQ (2)

ox h oA ph O o2 K% oAt
a_u+li:0 (3)

dx hoA
u=0;v=0atA=0

u:uslipz—gg—z;vszatlzl “

Following Chellam et al. [5] a stream function y can be defined as

w(x.A) = (hug —v,,x)f (A) )



where u, is the entrance velocity, f (/l) is an unknown function of

the dimensionless distance co-ordinate A . Now the velocities are
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Substituting for # and V from (6) and (7) into (1) and (2) we obtain
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Assuming the pressure is twice differentiable we can differentiate

(9) with respect to x to get
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Differentiating (8) with respect to A and on using (10) we arrive at
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Integration of (11) gives rise to the following ordinary differential

equation
Rewlf’2 —ﬁ"’]+ fT-M?f =K (12)

where Re,, is the wall Reynolds number (= Vw%j , M 2 the

h’Bio
square of Harmann number | = 0 f and K the constant of

integration.

Perturbation Solution
The third order non-linear ordinary differential equation (12) is
solved by a regular perturbation method. The solution of (12) for

small values of Re,, may be expressed in the form of a power series

as
(@)= 7o)+ Reyy /i(A) +Reyy” 12 (A)+--
K=Ky+Re, K, +Re, 2 K, +--- (13)

where f;’s and K;’s are independent of Re, . Substituting (13)

into (12) and equating terms of like powers in Re,, leads to the
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following
f5-M>f5 =Ko

T 2 = fof§-M* i =K (14)

The boundary conditions now transform into
fl" =0; f;=0atA=0,i>0
f0=0; fi=0atA=1,i>1
fi=off at A =1, i20 (15)

where ¢ (: \/%h) is the slip coefficient. The solutions of

equation (14) subject to the boundary conditions (15) are given by
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where 4;,B;,Cj,Kj, i=12 are constants that depend only on the
slip coefficient. Having determined f;'s the velocity profiles can

now be found using the expressions below.

ulx,A) = (uo - v;x }/6 +Re,, f7) (16)
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Mid-channel axial and transverse velocities normalised by the local

maximum values are calculated and shown graphically. It is observed
that in the absence of the magnetic field and slip the results reduce to

the one given by Green [3].

Discussions
A perturbation solution of the velocity field is given by equations
(16)-(17). Typical velocity profiles are plotted for parametric values

of the slip coefficient ¢ = 0, 0.1 and 0.3. Figure 2 is a plot of u

versus A for an entrance and Reynolds number of 1000. The curves



are plotted for ¢ = 0.0, wall Reynolds number Re = 0.01 and
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Figure 2. Axial velocity profiles in the absence of slip

Hartmann number M = 0.5, 1.0, 2.0. In the absence of slip as
expected the velocity at the membrane surface (A =1) is 0 when ¢ =
0. This is seen in figure 1 which is in excellent agreement with
Chellam et al. [5]. Figures 3 — 4 reveal that as slip increases with

increasing ¢ , the wall shear decreases resulting in flatter axial

=) 5
g .

% '!| 5 Aa, = 407
W =8 1

= |

=

S n,d| ! o M= 85
i | B " - M=1.0
: |8 o e M= 20
o e oL
K 0 0.1 02 03 0.4

DIYENSICHLESS AX AL VELOCITY

Figure 3. Axial velocity profiles in the presence of slip

velocity profiles. The effect of magnetic field for each specific value
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Figure 4. Axial velocity profiles in the presence of slip
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of the slip is considered and we observe that this results in further

flattening the velocity profiles.
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Figure 5. Transverse velocity profiles in the presence of slip

Mid-channel transverse velocity normalised by the local maximum
values are shown in figure 5 for the same values of wall Reynolds
number and entrance Reynolds number as considered above with the
slip coefficient taken to be 0.3. It is observed that for increasing

Hartmann number the magnitude of the transverse velocity increases.

Conclusions

The fluid mechanics of a membrane filtration module in the presence
of a transverse magnetic field having one porous wall has been
investigated using a regular perturbation method. The axial and
transverse velocity profiles have been calculated. It has been
observed that the effect of magnetic field along with the effect of slip

results in flattening the velocity profiles.
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