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Abstract

We develop a method for analysing linear internal waves gen-
erated by an oscillating obstacle moving horizontally at con-
stant speed through a depth-dependent medium. The new fea-
ture of the method is that it uses ray theory not to approximate
the wavefield directly (which would fail near the source and
near caustics) but to approximate the normal modes. The nor-
mal modes are then combined by inverse Fourier transform to
obtain a spatial description of the wavefield. We discuss this
method and its relation to the theory of Lighthill [5]. We illus-
trate the method by computing lee waves radiated from a sphere
in a cross flow with vertical shear.

Introduction

We examine the propagation of internal waves generated by an
obstacle moving horizontally at constant speed while oscillat-
ing vertically at constant frequency. The mean flow and mean
buoyancy are depth dependent, and the linear solution is com-
puted using a Fourier integral representation. This is a stan-
dard approach that requires the calculation of (vertical) normal
modes. For a non-uniform medium, the normal modes are gen-
erally difficult to obtain in a useful analytical form, so we make
a simplifying modification. Instead of computing the normal
modes exactly, or numerically, we approximate them with ray
theory. The ray approximation for the normal modes is easy to
obtain, and when substituted into the integral representation the
result can give a reasonable approximation of the linear wave-
field. This includes regions near caustics and in the vicinity of
the obstacle, where traditional ray methods fail.

We refer to this approach as Maslov’s method, after the Russian
V.P. Maslov who devised something similar to correct singulari-
ties in the semi-classical limit of quantum mechanics [6]. In the
next section, we derive Maslov’s solution for our problem. The
solution requires a reference-level value at some depth near the
obstacle. We use a theory of Lighthill [5] to approximate the
solution at this depth. We then apply Maslov’s method to lee
waves generated by a sphere in a cross current with constant
vertical shear.

Maslov’s Method

We consider a stratified Boussinesq fluid. The coordinate sys-
tem, r � �x�y�z� with z positive upwards, is fixed to the mean
position of the oscillating obstacle. The internal waves have
wavenumber vector k � �k� l�m�. The buoyancy frequency is
N�z�, and the mean flow is �U�z��V �z��0�.

The internal-wave dispersion relation is

m2 � �k2 � l2��N2� ω̂2��ω̂2� (1)

where ω̂ � σ� kU � lV is the intrinsic frequency. We seek so-
lutions of constant σ, the frequency of the source.

Let w be the vertical velocity and consider a normal-mode so-
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of the form

ŵ�k� l�z�ei�kx�ly�σt�� (2)

del equation for ŵ consistent with the dispersion relation
itable for our purposes is

ŵzz �m2�z�ŵ � 0� (3)

� 0, (3) reduces to the Taylor-Goldstein equation, except
zz term in the latter that can be ignored in the ray approx-
n. The ray solution to (3) is (Gill [4], Section 8.12)

ŵ�k� l�z� � ŵ0�m0�m�1�2ei
� z

z0
m�k�l�z��dz�

� (4)

ŵ0 � ŵ�k� l�z0� and m0 � m�k� l�z0� are values at some
nce level z0.

aslov solution wm is the Fourier integral of (4)

wm�r�t� � e�iσt
∞��

�∞

ŵ0�m0�m�1�2

ei
� z

z0
m�k�l�z��dz�

ei�kx�ly�dkdl � (5)

that the exact normal modes are not required. The inte-
depends on the ray solution for m and values at the ref-

e level value z0 (see next section). The integral can be
ximated by Fourier series and calculated efficiently with
T.

press Maslov’s solution in another variable, we simply use
eory to relate that variable to ŵ. For example, Dη � w,
η is the vertical displacement and D � ∂t �U∂x �V ∂y is
earised advective derivative. With ŵ ��iω̂η̂, we have

ηm�r�t� � e�iσt
∞��

�∞

η̂�k� l�z� ei�kx�ly�dkdl (6)

� e�iσt
∞��

�∞

η̂0�m0�m�1�2�ω̂0�ω̂�

ei
� z

z0
m�k�l�z��dz�

ei�kx�ly�dkdl � (7)

fore, the subscript zero means evaluation at z � z0.

7) is equivalent to the result derived by Broutman et. al.
om wave-action conservation, in a way similar to Brown
Broutman et. al. analysed stationary mountain waves
nd shear and showed that Maslov’s method agrees well

traditional integral method involving normal modes. In
ountain-wave problem, the depth z0 corresponds to the
d, where a (linearised) boundary condition is applied. In
resent problem, the depth z0 does not correspond to a
ary. We approximate the solution at z0 using a theory

Lighthill [5], Section 4.9



Lighthill’s theory describes wave radiation from an oscillating
moving source, assuming a uniform medium. If we choose z0
near the source, then we can justify the uniform-medium as-
sumption because refraction is relatively unimportant in this re-
gion. The predominant process affecting wave propagation is
the strong divergence of waves away from the source, and this
process is accounted for by Lighthill’s theory.

In the following, for brevity, we will derive and plot solutions
only for the vertical displacement η.

Lighthill’s solution at z0

Lighthill [5] considers forcing of a general linear system by an
oscillatory source of frequency σ and spatial distribution f �r�.
His model equation is of the form

Lη�r�t� � f �r�e�iσt (8)

where L is a linear constant-coefficient partial-differential oper-
ator. By regarding ∂t � �iσ and ∇ � ik, L can be written as a
function B of σ and k, with

B�σ�k� � 0 (9)

defining a dispersion relation and a wavenumber surface for fre-
quency σ. Lighthill applies a Fourier transform to (8) and then
approximates the result with a stationary-phase analysis. He
finds that

η�r�t� �
4π2F

�∇kB� �κ�1�2r
ei�kx�ly�mz�σt�γ�� (10)

Here r is the distance from the origin, and κ is the Gaussian cur-
vature of the wavenumber surface defined by (9). The gradient
∇kB is with respect to the wavenumber vector k. The phase-
shift γ depends on the principal curvatures of the wavenumber
surface (see [5]). F is the Fourier transform of f , defined such
that

f �r� �

∞���

�∞

F�k� l�m�ei�kx�ly�mz�dkdldm� (11)

For group velocity cg � �cg1�cg2�cg3� the stationary-phase con-
dition

x � zcg1�cg3 y � zcg2�cg3� (12)

relates the wavenumber in (10) to position, yielding a spatial
description of the wavefield.

We want to use Maslov’s solution instead of (10) because (10)
breaks down near caustics. Maslov’s integrand (7) requires a
reference-level solution expressed in a normal-mode represen-
tation with coordinates k� l�z0. We obtain this by reverting to
Lighthill’s full integral representation without stationary-phase
approximation. As follows from (8) and subsequent equations,
this is (cf. (269) of [5])

η�r�t� � e�iσt
∞��

�∞

I ei�kx�ly�dkdl� (13)

where

I �

∞�

�∞

�F�B�eimzdm� (14)
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v’s solution (for a uniform medium) is obtained by evalu-
I asymptotically and then substituting the result into (13).
symptotic form for I gives its ray approximation and is the
m-medium limit of η̂ in (6).

tegrand in (14) has poles on the m-axis where the disper-
elation is satisfied, i.e. where B � 0. The asymptotic ap-

ation for I can be obtained by standard contour-integral
ds. The height z is assumed to be above the source, so
e radiation condition selects upgoing wave groups. This
I � 2πF eimz��∂B�∂m�, where m is now a function of k� l
h the dispersion relation. Thus

η̂�k� l�z� � 2π
F

∂B�∂m
eimz� (15)

5) represents the ray solution in normal-mode k� l�z coor-
s. Note the difference, in terms of singularities, between
the ray solution in spatial coordinates, i.e. the stationary-
solution (10). The stationary-phase solution is singular
r � 0 and where the Gaussian curvature κ � 0. These sin-

ties correspond to focal points of the ray paths. At r � 0,
ys intersect in a single focal point, as indicated by (12).

κ � 0 the rays also focus, but over the surface of a cone,
ed by Lighthill [5].

tationary-phase singularities are not present in (15). For
ple, the rays that focus on the surface of a cone in spatial
inates have different k� l values and are therefore spread

the normal-mode coordinates. There is a singularity
) when ∂B�∂m � 0. This corresponds to a buoyancy-
ncy turning point, which we discuss in the final section.

we determine B and F for our specific problem. A source
niformly stratified medium (with a constant buoyancy fre-
y N) generates internal waves according to the equation
.8) of [7], (327) of [5])

D2∂2
z η��∂2

t �N2�∇2
hη � D∂zq� (16)

orizontal Laplacian is ∇2
h � ∂2

x � ∂2
y , and for fluid veloc-

the source strength is q � ∇ �u. This represents the rate
lume outflow from the source per unit volume ([3], [5]).
aring (16) with (8) we find that

B � ω̂2m2� �N2� ω̂2��k2 � l2�� (17)

alue of F is given by the Fourier transform of the spatial
f the forcing function D∂zqs in (16), where qs excludes
scillating factor exp��iσt�. Thus

F � ω̂ m Qs� (18)

ich Qs represents the Fourier transform of qs.

rocedure is then as follows. We use the above expressions
and F to evaluate η̂�k� l�z� in (15) at a reference height z0
bove the source. We then use that result as η̂0 in (6) and
e ray theory to work out m and ω̂ at the height where we
the solution. Then we approximate the Fourier integral
a discrete Fourier transform.

ample

amine wave radiation from a sphere of radius a undergo-
all oscillations of amplitude h� a. This can be modeled

])

q�r�t� ��
3
2

�
U

x
a
�hσcos�σt�

z
a

�
δ�r�a� (19)



where δ is the Dirac delta function. The Fourier transform of q
is

Q�k�t� ��6iπa3 �Uk�hσcos�σt�m�
j1�Ka�

Ka
� (20)

where K � �k�, and j1�z� � �sinz��z2� �cosz��z is the spherical
Bessel function of order 1.

There are two contributions to q, one of zero frequency and
one of frequency σ, which we can treat in our theory by linear
superposition. As noted by Dupont and Voisin [3], the zero-
frequency component corresponds to lee waves (generated by
flow relative to the obstacle) and the terms with σ corresponds
to waves generated by the vertical oscillation of the obstacle.

We first consider a uniform medium in which a non-oscillating
sphere moves at constant speed in the negative x-direction. We
present results in the reference frame fixed to the sphere, in
which the mean flow is U0, a positive constant. Voisin [9],
eq. (5.9), has derived the stationary-phase solution for a uni-
formly moving dipole source using a Green’s-function tech-
nique. Modified for the source function q used here, Voisin’s
solution becomes

η�r�t�� H�x�
NQ

2πU2
0

xz
R

�x2y2 �R4�1�2

x2 �R2

cos

�
N�z�
UR

�x2 �R2�1�2
�
� (21)

where H is the Heaviside function, R � �x2 � y2�1�2, and Q is
given by (20) with σ � 0. The wavenumber dependence in Q is
related to position by the stationary-phase condition (12).

Figure 1 shows Voisin’s solution for η�a, where a is the sphere
radius. All axes in this paper are labelled in distance normalized
by a. The Froude number is Fr �U0�Na � 1, and z � 5a. Fig-
ure 2 shows Maslov’s solution for the same problem, in close
agreement with Voisin’s solution. Maslov’s solution is com-
puted with a 256 by 256 Fourier-series approximation to (5).
This gives a domain size of about 80a in y and about 200a in x,
beyond which the solution wraps around periodically.
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Figure 1: Voisin’s stationary-phase solution (21) for η�a at z �
5a. The axes are the horizontal positions x�a and y�a, with x�a
horizontal on the page. Dashed lines indicate the positions of
three lines of constant phase.

Voisin’s theory is limited to a uniform medium, but Maslov’s
solution (5) has been derived to allow depth-dependent mean
velocity and mean buoyancy. We continue to assume constant
N but now add a cross current with constant shear. All other
parameters are the same as in Figures 1 and 2. The cross cur-
rent has the form V �z� � Rz, where R is a constant. We choose
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gure 2: Maslov’s solution corresponding to Figure 1.
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e 3: Maslov’s solution for the same parameters as in Fig-
but in the presence of cross shear.

h that N�R � 25. The result of Maslov’s method is pic-
in Figure 3. Rays that in Figure 2 contribute to the south-
ing (y � 0) of the lee waves are now refracted toward
ncy-frequency turning points, where ω̂ approaches N and
aves are reflected vertically. Different rays have differ-
rning-point heights, but much of the lee-wave energy in
uthern wing gets reflected by the height plotted in Figure

ter reflection, the corresponding ray component is deleted
our calculation. (That is, we compute only contributions
the upgoing waves.) Rays that in Figure 2 make up the
rn wing (y � 0) of the lee waves are now refracted to-

critical layers, where ω̂ becomes vanishingly small. Each
proaches its own critical layer height asymptotically. The
l-layer behaviour is very similar to that occurring in the
tain-wave study of [8].

ssion

oint of using Maslov’s method instead of the traditional
proach is that Maslov’s method has a better range of va-
In our application of Maslov’s method, the ray approxi-

n is used for (3). It is well known that the ray solution to
valid when the slowly-varying criterion

���� 1
m2

∂m
∂z

������ 1 (22)

sfied. Consider for simplicity the case of constant N. It
e shown from the dispersion relation that

1
2

∂m
∂z

�����
�
�kUz � lVz�

�k2 � l2�1�2N

� �
1

�1� ω̂2�N2�3�2

�
� (23)

erm in the first square brackets on the right-hand-side
) is small if the Richardson number is large. For large



Richardson number, the ray solution to (3) fails only where ω̂ is
close to N, i.e. near a buoyancy-frequency turning point. This
is a caustic in the transform domain.

Despite this failure, Maslov’s method has advantages over tradi-
tional ray methods, which also break down at caustics. One rea-
son is that the ω̂ � N caustic in the transform domain is easy to
correct because the governing equation (3) is one-dimensional.
It can be shown that as the ray approaches the caustic, the ray
solution to (3) begins to fail when �m�2dm�dz� � 1. This con-
dition can be monitored in a ray calculation and can be used
to determine where the ray solution to (3) should be replaced
by an Airy-function solution to (3), which is straightforward to
calculate in this case.

In the spatial domain, the caustic-correction procedure is sig-
nificantly more difficult. The caustics can occur at any value of
ω̂, and they can have a range of forms, from the simplest Airy-
function caustic to caustics with cusps and other characteristics
that render the Airy-function representation inadequate. (See
also [1] for a caustic that is not correctable with an Airy func-
tion.) Even for the simple Airy-function caustic, the solution
near the caustic depends on the curvature of the caustic surface,
which must be determined.

There are other problems with the traditional ray method. For
example, Lighthill’s stationary-phase solution (10) diverges for
an oscillating source that does not move relative to the fluid.
This is a case where the Gaussian curvature of the wavenumber
surface vanishes everywhere. As Lighthill explains, the singu-
larity is removed when the source is put into motion. But how
fast do we have to move the source for the stationary-phase re-
sult to become valid? More generally, how do we know when
an increase in wave amplitudes predicted by a ray calculation
is a genuine prediction of linear theory, or a symptom of the
failure of the slowly varying approximation? There does not
appear to be a general criterion for assessing where ray the-
ory breaks down that is as useful and reliable as the one noted
above in relation to the one-dimensional equation (3), involving
m�2dm�dz.

Maslov’s method is based on the simple idea that the normal-
mode equation (here, (3)) does not have to be solved exactly.
Using a ray approximation instead is practical and overcomes
a number of limitations of traditional ray methods. We have
also obtained results (to be reported elsewhere) for an oscillat-
ing source, as in [3] but including mean shear. Further work
is needed to determine how effectively Maslov’s method can
model vertically trapped modes, Coriolis effects, and horizon-
tally varying media. These are areas for future research.

Acknowledgements

Funding was provided by NASA through the Atmospheric
Chemistry Modeling and Analysis Program (ACMAP grant
L68786D) and the Upper Atmospheric Research Satellite Guest
Investigator Program (grant NAS5-98045). Additional funding
was provided by the Office of Naval Research through the Tur-
bulence and Wakes Program (Dr. L. Patrick Purtell, program
manager) under contract number N00014-99-C-0270.

References

[1] Broutman, D., Rottman, J.W. and Eckermann, S.D.,
Maslov’s method for stationary hydrostatic mountain
waves, to appear in Q. J. Roy. Met. Soc., 2001.

[2] B
v
m

[3] D
tr
1

[4] G
1

[5] L
P

[6] M
m

[7] M
m
6

[8] S
d
1

[9] V
fl
1

624
rown, M.G., The Maslov integral representation of slowly
arying dispersive wavetrains in inhomogeneous moving
edia, Wave Motion., 32, 2001, 247–266.

upont, P. and Voisin, B., Internal waves generated by a
anslating and oscillating sphere, Dyn. Atmos. Oceans, 23,
996, 289–298.

ill, A.E., Atmosphere-Ocean Dynamics, Academic Press,
982.

ighthill, M.J., Waves in Fluids, Cambridge University
ress, 1978.

aslov, V.P. and M.V. Fedoriuk, Semi-Classical Approxi-
ation in Quantum Mechanics, D. Reidel. 1981.

iles, J.W., Internal waves generated by a horizontally
oving source. Geophys. Astrophys. Fluid Dyn., 2, 1971,

3–87.

hutts, G.J., Stationary gravity-wave structure in flows with
irectional wind shear. Q. J. Roy. Met. Soc., 124, 1998,
421–1442.

oisin, B., Internal wave generation in uniformly stratified
uids. Part 2. Moving point sources, J. Fluid Mech., 261,
994, 333–374.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	No Other Papers by the Authors
	------------------------------

