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Abstract

Measurements of the streamwise component u� on the centre-
line of a wake, confirm a transitional behaviour for normalized
high-order moments of ∂u�∂x� within the Taylor micro-scale
Reynolds number Rλ range 600 � Rλ � 900� This Rλ range
is equivalent to the large-scale Reynolds number Re range of
1�3�104 � Re� 2�8�104. The transition is short lived, with
respect to the dissipation length scale η� and is not observed for
velocity differences δu measured over differences greater than
10η� We suggest that these results are equivalent to previous ob-
servations known as “mixing” transitions � transitions that are
associated with the development of a truly 3-dimensional small-
scale turbulent structure � which are most probably a universal
feature of turbulent shear flows.

Introduction

In view of the mounting experimental evidence for the inter-
mittent nature of the energy dissipation rate, Kolmogorov[1]
(hereafter K62) refined his earlier similarity hypotheses[2]
(hereafter K41) for the description of the small-scale struc-
ture of turbulence at high Taylor micro-scale Reynolds num-

ber Rλ [� �
u2
�1�2 λ�ν, where λ is the Taylor micro-scale ��

u2
�1�2

�
�
�∂u�∂x�2

�1�2
� x is the streamwise direction, u is the

streamwise velocity fluctuation and ν is the kinematic viscosity,
see Ref.[3] and references therein for a comprehensive histor-
ical review]. It is well accepted that small-scale intermittency
is attributable to intense small-scale vortical structures[3]. Ex-
perimental evidence for the effect of these structures are the
“wide” exponential tails of the velocity derivative probability
density functions (pdf). A consequence of exponential tales
for the velocity derivative pdfs are moment-order magnitudes
higher than the corresponding Gaussian value. Also, the pdf
tails are known to extend as Rλ increases. An analytical conse-
quence of Kolmogorov’s K62 refinement is that the moments
of velocity derivative pdfs are Rλ dependent. Data assem-
bled for the skewness and flatness factors of ∂u�∂x over the
large Rλ range 2 � Rλ � 30000 shows qualitative agreement
with this expectation[3]. To provide such a large Rλ spread,
data have been assembled from many different types of turbu-
lent flows and direct numerical simulations (DNS) � though
individual experiments contributed a limited Rλ range of re-
sults. The firmly held view is that such collections, as shown
in Ref.[3], provide unequivocal evidence for the increasing ef-
fects of small-scale intermittency with Rλ�

There have been few concentrated efforts to generate turbu-
lence, over a reasonable Rλ range in the same experimen-
tal set-up. One instance is turbulence generated in a con-
fined, rotating, shear-flow[4]. Importantly, Rλ is raised by very
small increments over the significant range of 150� 5040� A
transitional behaviour for high-order moments of ∂u�∂x with
Rλ is observed. For example, the flatness factor, F∂u�∂x��
��∂u�∂x�4����∂u�∂x�2�2�� increases up until Rλ� 600� in agree-
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with the results[3], but then decreases for the range 600�
900� after which it increases again with Rλ� These results
for the most part � criticized for their unconventional

geometry and instrumentation[3]. The aim of this work
ocument the Rλ dependency for high-order moments of
� in particular F∂u�∂x � in a given flow over a reason-

ange of Rλ� To avoid potential criticism, measurements
ade, using a conventional wind-tunnel, in the turbulent
behind a porous body. A well-proven constant temper-
anemometer (CTA) design, combined with a single-wire
of adequate resolution, is used.

rimental Details

easurements are made in a NORMAN grid. The geometry
posed of a perforated plate superimposed over a bi-plane

f square rods. Further details of the geometry and the re-
g flow are described elsewhere[5] and only a brief descrip-
f the experimental set-up is given here. The grid is located
ecirculating wind-tunnel with a test section of 2�7� 1�8
oss section and length 11 m. The central three rows of the
al bi-plane grid (mesh size M � 240 mm� original solid-
� 28%� have alternate meshes blocked (final σ � 42%�.
ls of u on the wake centreline at x�M � 40, are acquired
a CTA[6] combined with a single hot-wire probe made
7µm diameter Wollaston (Pt-10%Rh) wire. The mean

ity, at the measurement station, ranges from 2�3� 14�1

nd the ratio
�
u2
�1�2

�U is a constant value of 0�17� The
overheat ratio is 1�65 and the instantaneous bridge volt-
buck-and-gained and the amplified signal is low-pass fil-
flp with the sampling frequency fs always at least twice
o avoid electronic noise contamination, flp is set immedi-
prior to which electronic noise is noticed to unduly infil-
he dissipation spectrum � assumed to be represented by
k1� [here, k1 is the 1-dimensional longitudinal wavenum-
� 2π f �U and φu�k1� the 1-dimensional energy spectrum
uch that �u2� � � ∞

0 φu�k1�dk1�� This is possible because
w-pass filter, Frequency Devices Model 900, has a fre-
y resolution of 1 : 499 per decade. The voltage signal is
ed with 12�bit resolution. Due to the non-linearity of
obe velocity-voltage calibration, converted velocity data
d to be saved with 13-bit resolution to avoid a loss of res-
n at low velocities. Time differences τ and frequencies f
nverted to streamwise distance r �� τU� and k1 respec-
using Taylor’s hypothesis. The mean energy dissipation

ε� is estimated, assuming isotropy amongst the velocity
tive components, as �ε�� εiso � 15ν

� ∞
0 k2

1φu�k1�dk1� The
t dissipation length scale η� �ν3�εiso�

1�4 is 0�48mm and
allest is 0�12mm and the non-dimensional wire sensing
range is 0�48�1�8� Record lengths range from � 7200s

e lowest mean velocity to � 1500s for the highest. In
alysis to follow, a large length scale l, indicative of the

energetic eddies, will be required. We estimate l from the
e wavenumber 1�k1�max where k1φu�k1� is a maximum.
er details and justification can be found in Ref. [11].



As Rλ increases, the wire resolution decreases. All wires used
in this investigation have more than adequate frequency re-
sponse � a built-in square-wave impulse �300Hz) applied to the
anemometer bridge typically gives more than 25kHz compared
to a maximum dissipation frequency fκ �U�2πη of 18�5kHz.
The CTA bridge is based on a well-proven design[6]. The nov-
elty of this design is the omission of cable-inductance com-
pensation often found in commercial anemometer bridges. An
obvious consequence of the in-house design is that fine-scale
measurements are extremely dependent on wire resolution and
response, whereas commercial anemometers are known to auto-
matically apply an inductance compensation of��6dB per oc-
tave for f � 1000Hz. With our anemometers, an adequate mea-
surement is only possible with a probe of adequate frequency
response and resolution, whereas with commercial anemome-
ters, the added cable-inductance compensation may give a false
sense of security for a fine-scale measurement when used with
a probe of inadequate resolution. It is worth noting that the
majority of the experimental results presented in Ref.[3] were
obtained with commercial anemometers.

Results

The Rλ dependence of F∂u�∂x

Given a decreasing wire resolution, it is more convincing to
compare results, over the resulting Rλ range 430� Rλ � 1150�
at the same spatial resolution. This is accomplished with the
use of normalized 4th-order structure functions of the longitu-
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Figure 1: An example of using cubic splines to estimate Fδu�
Rλ � 900� �� experimental data; ———, with no weighting;
���� � with log weighting.

dinal velocity increment δu�r�� � u�x� � r��� u�x�� [here, r
is the spatial separation between instances of u and � denotes
normalization by η�,

Fδu � ��δu�r���4����δu�r���2�2 � (1)

The approach allows the examination of the Rλ dependence
of Fδu for decreasing values of r�. To estimate F∂u�∂x� i.e.
Fδu�r��0�� homogeneity of the smallest scales is assumed for
δu�r��� Cubic splines are fitted to the resulting distribution of
Fδu over the range of �30 � r� � 30� The exercise is repeated
with a logarithmic weighting to Fδu. Figure 1 shows an example
of the resulting distributions of Fδu at Rλ � 900� There is little
difference between weighted and non-weighted results. The be-
havior of Fδu is investigated at values of r� � 0� 2� 4 and 10.
Figure 2 shows the resulting Fδu distributions versus Rλ for the
chosen values of r�� A transitional behaviour for Fδu is observed
within the range 600� Rλ � 900� At r� � 2, which is the limit
of the probe resolution, the magnitude of Fδu agrees with, and
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e 2: The Rλ dependence of Fδu in a NORMAN grid flow,
Rλ � 1150. ��r� � 0; 	�r� � 2; ��r� � 4;��r� � 10

s over the same range of Rλ as Ref.[4]. Figure 2 shows that
ansition in Fδu is dependent on r� up until r� � 10� This
sts that the phenomenon responsible for the transition may
a characteristic length scale � 20η� It is interesting to re-
at the diameter range for the intense small-scale vortical

ures called ”worms” has been shown to be � 16η[8].

ks on the Inertial- and Large-Scale Behaviour

ential criticism for our work is that the small-scale tran-
is due to unwanted anomalous large-scale behaviour. In

ubsection we will carry out some simple checks. Prior
s, we have checked that �u2�1�2�U and L do not change
ciably with Rλ - certainly not 
 O�10%� as seen for the
e in F∂u�∂x� Within the framework of K41 the expectation
δu��n� is

��δu��n��Cnr�n�3 � (2)

n universal. However, for modern refined similarity hy-
ses, for example K62, small-scale intermittency is held re-
ible for the modification to the power-law exponent for r��
hat,

��δu��n��C�

nr�ζ�n� � (3)
�

n no longer universal (in the sense of being Rλ indepen-
Figure 3 shows ��δu��2� and ��δu��4� normalized by dis-

on scales. There are three main ranges of interest: the
ative range r� � 60, the inertial range 60 � r� � L� and
rge-scale or de-correlated range, r� � L�� Within exper-
al uncertainty, there is no Rλ dependence for ��δu��2� in
the dissipative or inertial ranges � specifically, for the in-
range, there is no Rλ dependence for either C��2� or ζ�2��
δu��4�, there is Rλ dependence in magnitude throughout
ssipative range and for C��4� through the inertial range.
ugh, inertial range scalings Eq.(3) have been discussed
here[5], the inertial range scalings are Rλ independent
�2�� 0�73 and ζ�4�� 1�34 for the range 60� r� � 500�
is approached, the ��δu��2� and ��δu��4� distributions be-
peel-off; with the r� at which this begins increasing with



Rλ. The magnitude of the de-correlated region is Rλ depen-
dent and obeys (not shown, see Ref. [9]) ��δu��2�� 2Rλ�


15

and ��δu��4� � 2�Fu �3�R2
λ�15 where Fu � �u4���u2�2� With
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Figure 3: The Rλ dependence of ��δu��2� and ��δu��4� in a
NORMAN grid flow, 430 � Rλ � 1150.

ζ�2� � 0�73 and ζ�4�� 1�34� we can expect Fδu to behave like
r�ζ�4��2ζ�2� � r��0�12. Figure 4 shows this to be the case. We
do not consider the difference between -0.10 and -0.12 to be
experimentally significant and we concur that Fδu � r��0�10, in-
dependent of Rλ[3]. Figure 4 delimits two Rλ examples as the
upper and lower bounds for which the transition in F∂u�∂x oc-
curs. There is no untoward behaviour in the inertial- or large-
scale ranges and both distributions follow that of their immedi-
ate neighbor. For a Gaussian process, the flatness factor F � 3.
Figure 4 shows that such a magnitude for Fδu is only approxi-
mately approached as r��∞ [ strictly Fδu�r��∞ � �Fu �3��2��
The Rλ dependence for the magnitude in Fδu, shown in Figure
4, is attributable to the Rλ dependence for C��4� shown in Fig-
ure 3. In summary, Figures 3 and 4 show that there is nothing
untoward about the Rλ behaviour of the inertial- and large-scale
regions for the distributions of ��δu��2� and ��δu��4�� We can
safely rule out any “transitional” behaviour for inertial- or large-
scales being responsible for the retrograde behaviour we have
observed, in Figure 2, for F∂u�∂x�

Further Evidence for a Transition of Small-Scales

In a recent paper, Dimotakis[10] reviews the available evidence
for what he calls the “mixing transition”. He shows, for many
free shear flows, that a transition, visualized as a dramatic in-
crease in “dimpling” of the large-scale structures, takes place

within the large-scale Reynolds number Re
�
� �

u2
�1�2

L�ν
�

range 104 �Re� 2�104� The Re range appears to be universal.
The transition is suggested to be the signature of the establish-
ment of a truly 3-dimensional small-scale structure � a nec-
essary requirement for fully developed turbulent flows. How-
ever, he does not dismiss the possibility that manifestations of
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e 4: The Rλ dependence for Fδu in a NORMAN grid flow,
Rλ � 1150. ���� � a guide only; — - - —,Rλ � 820;
, Rλ � 915;

nsition could be slightly flow dependent � citing that the
anism responsible for the creation of the small-scale 3-
sional structure is flow dependent.

xplanation[10] for the “mixing” transition requires the in-
tion of a new inner length scale l called the laminar-layer
ess. The scale l is generated by viscosity after a sweep of
across the transverse turbulent layer. The place of l� in

ual hierarchy of turbulent scales, is η� r � l � L� It is
sed that not until the smaller scales r are de-coupled from
ew scale l can a turbulent flow be considered fully devel-
Scaling arguments, offered in Ref.[10], suggest that this

ot occur until 104 � Re� 2�104 � a Re range suggested
equivalent to 100 � Rλ � 140 i.e. Rλ �


Re. However,

lieve that Dimotakis’ estimate of Rλ from Re should be,
justifiably, estimated as

Rλ �
�

15Re�Cε � (4)

ctor Cε is the non-dimensionalised energy dissipation rate
is expected to be independent of viscosity i.e. Rλ inde-

nt. For measurements limited to one velocity component,
mon form of non-dimensionalization of �ε� is,

Cε � εisoL�
�

u2
�3�2

� (5)

e 5 shows sufficient evidence to accept that Cε is Rλ inde-
nt for Rλ � 300 and Cε � 0�5 appears to be a reasonable
rsal estimate for shear flows free of strong mean shear.
esult is, seemingly, more specific than the view that the
itude of Cε is flow dependent[12] and of O�1� and we be-
such a view needs modification, especially with respect
method of estimating L and the value of Rλ� These is-

re discussed in detail in Ref. [11]. Figure 5 suggests that
is insufficient separation between the energy and dissipa-
cales, for shear flows in the range 100� Rλ � 140� which
essary requirement for Cε to obtain constancy. However,
e 5 does suggest that the rate of approach of Cε to Rλ
endence appears to be flow dependent. Using Cε � 0�5,
takis’ range for the transition appears more likely to be

Rλ � 775. The agreement between this “new” Rλ range
e transition range for F∂u�∂x shown in our work here, Fig-
and that of Ref.[4] may not be so coincidental. Indeed,
] demonstrates that the transitional behaviour for F∂u�∂x is

likely attributable to a “change” in the small-scale struc-
f turbulence. It is not implausible that this “change” is the
ishment of a truly 3-dimensional small-scale structure.
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Figure 5: Normalized dissipation rate, Cε � εisoL�
�
u2
�3�2

[Eq.
(5)] for a number of shear flows. Details as found in this work
and Refs.[7, 11]. �� circular disk, 154 � Rλ � 188;�� pipe,
70� Rλ � 178; 	� normal plate, 79� Rλ � 335; �� NORMAN
grid �174 � Rλ � 516; �, NORMAN grid (slight mean shear,
dU�dy � dU�dy�max�2), 607 � Rλ � 1217;�� NORMAN grid
(zero mean shear), 425 � Rλ � 1120; �� “active” grid, (Refs.
[13, 14]) 100 � Rλ � 731;�� “active” grid, (Ref. [13]) with Lu
estimated by Ref. [15]. For Ref. [13] data we estimate Lp � 0�1
m and for Ref. [14] data we estimate Lp � 0�225 m[14].

Final Remarks & Conclusions

We have observed transitional behaviors for high-order small-
scale quantities e.g. F∂u�∂x� We believe our observations are
reconcilable with the visual observations of Dimotakis[10] if
relation (4), that between Rλ and Re� is adopted. Such transi-
tions are probably a signature for the development of a truly 3-
dimensional small-scale structure � a necessary ingredient for
fully developed turbulence. Flows with Rλ below this range are
less likely to be universal.
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