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Abstract

A useful form is proposed for the mean velocity profile in
turbulent wall-bounded flows. This form is used to inves-
tigate the effects of pressure-gradients on low Reynolds
number flows.

Introduction

Since the analysis which led to the logarithmic law
followed by Coles’ law-of-the-wall/law-of-the-wake there
have been various variations on this basic formulation
used by experimentalists and turbulence modellers to fit
velocity profiles for turbulent flows. Despite this pro-
liferation of functional forms there is no one form that
correctly takes into account all of the proper asymp-
totic behaviour of these flows. Here a relatively simple,
but asymptotically correct, form is proposed and used
to analyse the effects of pressure-gradient on the inner
boundary layer at low Reynolds numbers.

Background

One of the motivations for this paper and the analysis of
data underlying it was the author’s frustation in attempt-
ing to use existing “curve-fits” for the mean-velocity pro-
files for turbulent boundary layers. When attempting to
examine the effects of changes in external conditions on
boundary layers it is useful to reduce the description to a
small number of parameters. Coles’ law-of-the-wall/law-
of-the-wake was a significant step forward in this direc-
tion. There have also been other formulations such as [12]
and [8] which attempt to fit the whole of the boundary-
layer with the inclusion of a wake function with varying
success. Different formulations have advantages and dis-
advantages but all share some deficiencies.

Some of the deficiencies in existing curve-fits are;

1. Unrealistic behaviour for strongly accelerated flows
with small wakes near the outer edge of the layer.

2. Difficulty in fitting standard log-law profiles to low
Reynolds number profiles.

3. Incorrect asymptotic behaviour near the wall which
becomes significant in large pressure-gradients

4. Difficulty with some wake profiles that do not have
asymptotically zero gradient beyond the edge of the
boundary layer.

The first arises from the fact that the wake is reduced
in accelerating flows and may become close to zero. The
actual profiles round-off to give close to zero velocity gra-
dient near the edge of the layer whereas the in the stan-
dard log-law the gradient dies off rather slowly. This
also leads to difficulty in identifying the edge of the layer
since, without the wake the log-law continues indefinitely.

The second point relates to evaluating parameters such as
the wake strength and the skin-friction (experimentally)
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flows at low Reynolds number
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ting the profiles. At low Reynolds number the in-
e due to the wake leads to an apparent change in
g-law intercept when trying to fit standard formu-
s since a log-law either doesn’t exist, or is swamped
e wake component.

third point refers to the observation that in
eynolds number flows with very strong pressure-

ents the region close to the wall is affected by the
ure-gradient resulting in noticeable differences close
e wall.

final point is, perhaps, minor. It relates to the fact
the mean-velocity for boundary layers reaches a con-
at, or just beyond the edge of the layer. Coles’

-function and others have zero gradient right at the
but behave anomalously beyond (they are more ap-
iate for pipe or channel flows). This leads to small
ulties when trying to fit these functions to real data

must then be truncated at the edge.

following functional form was developed to satisfy
in asymptotic conditions. The functional form for
ean-velocity profile of a boundary-layer and other

bounded flows must satisfy certain boundary condi-
and achieve certain states asymptotically. In the
region close to the wall it is well known that the
r-series expansion for a wall bounded flow is of the

+ = y+ + 1
2p+y+2 + a1y

+4 + H.O.T. y → 0 (1)

e U+ = U/Uτ , y+ = yUτ/ν, p+ = (ν/U3
τ )dp/dx and√

τo/ρ is the wall-shear velocity. This expansion
d apply for all wall-bounded flows close enough to
all. At high Reynolds number the value of p+ is
ently very small and so may be neglected, however
trictly part of the expansion.

he outer edge of the boundary layer ∂U/∂y →
y → ∞ or in the case of a pipe or channel flow
y = 0 at y = H where H is the distance from the
to the centre of the flow (i.e. H is the channel half-

or H is the radius of the pipe).

idering these two conditions first it may be noted
none of the traditionally proposed functional forms
y either. Near the wall the effect of pressure gra-
is generally neglected, perhaps because it is small
ny flows. In the outer part of the flow traditional
assume a logarithmic law extending to infinity with

ke function superimposed. Hence while the wake
ion may have zero gradient (or asymptotically zero
ent) at the outer edge of the layer the gradient is
st Uτ/κy which does approach zero - though very

y.

der to address these deficiencies a new functional
for the mean velocity profile is proposed that re-
the overall general structure embodied in the tra-
al functional forms but has the correct asymptotic
iour.



The proposed functional form

The proposed form has a three part structure in which
the boundary layer profile is the sum of three separate
boundary layers i.e. a viscous sublayer, an overlap layer
and a wake layer. Each individually has asymptotically
zero gradient at the outer edge and hence the sum satis-
fies the outer boundary condition.

Sublayer region

The functional form chosen for the sublayer region is as
follows.

U+ = 1
ao

(1 − (1 + 2aoy
+ + 1

2 (3a2
o − aop

+)y+2 (2)

− 3
2a2

op
+y+3)e−3aoy+

)

This function asymptotes to a constant value at large y+

and has a Taylor series expansion of

U+ = y+ + 1
2p+y+2 − 9

4a2
o( 1

2ao + p+)y+4 + H.O.T. (3)

One interesting feature of this type of function is that it
is possible to modify the function to achieve the desired
Taylor series expansion (which is what has been done
here). It also asymptotes to a constant value at large y+

and so further from the wall the effect is simply to shift
the profile up. This has some similarity with the ap-
proach of [8]. The coefficient 1/ao may be considered to
be be a measure of the thickness of the sublayer or alter-
natively, following a suggestion of [1] a critical Reynolds
number of the sublayer. Various measurements suggest
that this thickness varies with p+ and also with other
parameters such as roughness. The value is directly re-
lated to the intercept of the log-law in the traditional
formulation. It should be noted that in the Taylor series
expansion the coefficient of the fourth order term is di-
rectly proportional to the first term in the expansion for
the Reynolds shear-stress (i.e. −uv

+ = 4a1y
+3)— if we

neglect the streamwise gradients of wall shear-stress and
turbulence intensities. This is exactly true in the case
of pipe or channel flows. Hence the expansion suggests
that the increase of the Reynolds shear-stress at the wall
depends on p+. This point will be addressed later.

Overlap region

The function chosen for the overlap region is such that
its expansion does not affect the correct terms in the near
wall expansion and the log-law “rounds off” near the edge
of the layer sufficiently quickly.

U+ =
1
6κ

ln

(
1 + (0.66aoy

+)6

1 + η6

)
(4)

where η = y/δ and δ is a measure of the overall bound-
ary layer thickness (the value of δ is similar to the 99%–
thickness, though not based on this). The first term in
the expansion of this function is of order y+6 and hence
does not affect the first terms in the near wall region.
This function also asymptotes to a constant for large y
as required by the outer boundary condition. In the inter-
mediate range when y+ is large ((0.66aoy

+)6 >> 1)and
η is small (η << 1) the form of this function combined
with the sublayer function is approximately given by

U+ =
1
κ

ln(y+) +
1
κ

ln(0.66ao) + 1/ao (5)

and hence it reduces to the traditional log-law. The log-
law intercept is thus 1

κ
ln(0.66ao) + 1/ao. This is very
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rtant in accelerated boundary layers where the wake
become negligible and the standard log-law contin-
o increase. The constant of 0.66 has simply been
n to give a slightly better fit to the data in the in-
egion.

region

form for the wake has been chosen such that it
aches a constant value outside the layer and so
it has a form that is very similar to that of a two-
nsional wake in free-shear flow. It is given by

U+ = a2(1 − e−2(η2+η6)), (6)

e a2 is the wake factor that varies with pressure gra-
in a similar manner to Coles’ wake factor Π. In fact

alue is roughly equal to 2Π/κ although the rounding-
the log-law means the correspondence is not exact.
form of wake function is not a great advance over
proposed by Coles and others except that it quickly
ptotes to the free-stream velocity at the edge of the
dary layer. This is the correct behaviour for bound-
ayers, whereas Coles function is more appropriate
pe and channel flows. It is interesting to note that
orm is quite similar to that of turbulent free wake
es and the η6 term may be considered to be a cor-
n due to intermittency near the edge of the layer.
ted, this is not the most appropriate form for pipe
hannel flows, although it does fit the data very well
t for a very small error right at the edge. In these
a form such as Coles’ wake function may be more
priate since the boundary condition is different. It

o possible to modify the above function using differ-
o-ordinates such that y reduces as the centre of the
s exceeded (for example y = |R− r| for a pipe-flow)
his will not be pursued here.

e we have a three-layer structure which is the same
e traditional framework. The buffer region is con-
d in the overlap between the two inner layers. When
combined we have a boundary layer profile with

3 parameters, the constant ao, which is essentially
tly related to the log-law intercept, κ the universal
w constant and a2 which is directly related to Coles’
parameter. The only additional parameter that is

ved is p+ which is an external parameter and that
be involved due to the expansion of the mean flow
the wall. The other point to note is that the com-
function naturally splits into U+ = f(y+) + g(η)

e f and g contain logarithmic parts, which is again
y in line with the traditional approach.

nal functional form is the sum of these three parts
ence is given by

= 1
ao

(1 − (1 + 2aoy
+ + 1

2 (3a2
o − aop

+)y+2 (7)

− 3
2a2

op
+y+3)e−3aoy+

)

+
1
6κ

ln

(
1 + (0.66aoy

+)6

1 + η6

)

+a2(1 − e−2(η2+η6))

st this may appear complicated the only parameters
o, which is dependent on p+ (where p+ is small ao

to a universal constant), κ, which is a universal
ant, and a2, which is a wake parameter. It may
ted that this has the correct asymptotic behaviour,
near the wall and near the edge of the layer — this
improvement over many forms in common use. It



also includes the dependence of the sublayer thickness on
p+ which is a necessary requirement in order to correctly
reproduce data.

A least squares curve-fitting procedure was used to find
the values of the unknown coefficients and examine their
universality. Comparison of this function to a large
amount of data suggests that a universal value of κ pro-
vides an excellent fit to the velocity profile. At low
Reynolds number and with strong pressure-gradients the
constant ao varies with p+. Hence ao = f(p+) where f
denotes some unknown function. This is not surprising
and the shifting of the log-law intercept has been noted
before. In many cases of moderate-to-high Reynolds
number boundary layers the effect of p+ may be neglected
and so the functional form is slightly simplified.

The values of the coefficients

A very large amount of data from different flows has been
used to evaluate the values of the coefficients and their
universality or variation. DNS data was used for many
of the cases. This avoids the uncertainties in the value
of the wall shear-stress and probe wall corrections that
are generally (though not always) associated with exper-
imental data. DNS data also has sufficient accuracy and
resolution near the wall to examine the behaviour of the
inner flow. It should be pointed out that DNS data does
have its own uncertainties related to treatment of the
inlet and outlet conditions and potential spatial resolu-
tion problems. This has been noted in some cases when
comparing different simulations for the same flow with
matched parameters: the velocity profiles are not always
the same. One reason for this may be that the final pro-
file depends on the method used to initiate the flow.

Despite this caveat DNS data provides a good test bed
to evaluate the values and universality of the constants.

Examination of a wide range of data has shown that a
universal constant value of κ = 0.395 provides a very
good fit to all the data.

Since, as has already been noted, ao varies with p+ then
we first examine zero pressure-gradient boundary layer
data. In particular the simulations of [11]. From this we
find the value of 0.0857 for κ = 0.395. This leads to an
effective log-law intercept of 4.397. If we consider 1/ao

to be some measure of the sublayer thickness this value
corresponds to y+ = 11.7 which is close to the position
of maximum production in the layer.

These two coefficients define the functional form com-
pletely except for the wake parameter which appears to
vary with Reynolds number for zero-pressure gradient
flow and is very sensitive to pressure-gradients. As a
matter of interest the wake parameter for Spalart’s high-
est Reynolds number in this formulation is 1.597 (also
as noted by Spalart it does not vary much for the three
Reynolds numbers examined).

The variation of ao with pressure-gradient

If the pressure-gradient parameter p+ is small (say, less
than 0.002) then ao is constant and the only free pa-
rameter is the wake strength a2. The parameter p+ de-
creases with increasing Reynolds number and hence at
moderate Reynolds number it is acceptable to neglect
the effect - this leaves us with a universal law of the wall
U+ = f(y+) and ao may then be considered to be a uni-
versal constant (at least for flows on smooth walls that
are nominally two-dimensional or axisymmetric). At low
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olds numbers this is not necessarily the case and the
of p+ cannot be neglected. Cases of interest where
ay occur are in highly accelerated flows approach-
laminarisation and in flows approaching separation
τ → 0, p+ → ∞). This is a good argument for at-
ting to get the asymptotic behaviour of the profiles
ct.

e 1 shows the variation of ao with p+ for a range
ws. The data shown are from [10], [11], [9] and [6]
oundary layers, [7] and [4] for channel flows and [5]
3] for pipe flows. Whilst there is a some scatter a
ite trend is apparent. A line of best fit is also shown
ter use. It should be noted that it is not clear that
a function only of p+ and analysis of data suggests
there may be some memory of the boundary layer
ws where p+ is changing quickly. This issue will not
dressed here but the values shown are for flows in
p+ varies only slowly. The scatter may well be due
mory effects.
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ample of the fit to the data of [6] is shown in figure
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re 2: Fit to strong adverse pressure-gradient data

first order behaviour of the Reynolds shear stress

inted out earlier the above form, if correct, has im-



plications for the leading order term in the expansion of
the Reynolds shear-stress. As already stated the coeffi-
cient of the fourth order term in the expansion of the
mean flow, a1, is directly proportional to the leading
term in the expansion of the Reynolds shear-stress. If
we take the value of ao = 0.0829+0.75p+ as given above
then substitute into the coefficient as given in (3) and
truncate for small p+ we find that the Reynolds shear-
stress, to leading order should behave approximately as
−uv

+ = (0.0026 + 0.132p+)y+3. It is well known that
the leading order term in the Reynolds shear-stress is
affected by pressure-gradient and increases in adverse
pressure-gradients and decreases in favourable pressure-
gradients. Figure 3. shows data from the same authors
as above for the leading order term, 4a1 plotted against
p+. Also shown is a line of best fit and the truncated
function above. The results suggest that this functional
form correctly captures the leading order behaviour of the
Reynolds shear-stress as it varies with pressure-gradient.
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Figure 3: Variation of the coefficient 4a1 versus p+

Conclusions

A useful functional form for the mean velocity profile has
been developed that provides both an excellent fit to data
and has the correct asymptotic behaviour. It also has
a nice conceptual structure that is consistent with the
physical and intuitive understanding of boundary layer
structure. It is consistent with the changes that occur
in leading order behaviour of the Reynolds shear stress
observed in measurements. It is hoped that this will pro-
vide a useful tool for analysing data and may also be of
some use in numerical schemes.
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