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Abstract 
The paper presents an implementation of a new NVD scheme 
into an implicit finite volume procedure, which uses pressure as a 
working variable. This scheme with the minimum number of 
adjustable parameters is robust and does not create convergence 
problems on the wide range of test cases. The method is applied 
to the computation of steady transonic and supersonic flows over 
bump in-channel geometry as well as to the transient shock-tube 
problem. The results are compared with other computations 
published in the literature. 
  
Introduction 
Many NVD schemes now exist for the resolution of steep 
gradients (such as shocks) arising in fluid flow problems e.g. the 
SMART scheme of Gaskell and Lau [2], the SOUCUP scheme of 
Zhu & Rodi [8], and the STOIC scheme of Darwish [1]. Most of 
those schemes use different differencing schemes through the 
solution domain. This procedure includes some kind of switching 
between the differencing schemes. Switching introduces 
additional non-linearity and instability into the computation. The 
worst case is that instead of a single solution for steady state 
problem, the differencing scheme creates two or more 
unconverged solution with the cyclic switching between them. In 
that case it is impossible to obtain a converged solution and the 
convergence stalls at some level. This is a very unsatisfactory 
feature of a differencing scheme and it should be avoided. 
This paper presents a new scheme with the minimum number of 
adjustable parameters, into an implicit non-uniform finite-volume 
procedure, which uses the pressure as a working variable. This 
scheme is robust and does not create convergence problems on 
the wide range of test cases. One advantage of this scheme in 
comparison with all other differencing schemes is some kind of 
switching. Only two differencing schemes, central differencing 
and blending between upwind and central differencing are 
included where the blending factor is determined automatically. 
The scheme is considered to be a kind of smooth switch. 

  
Finite Volume Discretization 
The basic equations, which describe conservation of mass, 
momentum and scalar quantities, can be expressed in the 
following vector form, which is independent of coordinate 
system used. 
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re ,  and  are respectively the density, velocity 

r and scalar quantity,  is the stress tensor and  is the 
r flux vector. The latter two are usually expressed in terms 

asic dependent variables. The stress tensor for a Newtonian 
 is: 
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 the Fouries-type law usually gives the scalar flux vector: 
ΦΓ gradφ            (5) 

the purpose of illustration eqn (3) may be expressed in 2D 
esian coordinates as: 
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ration of eqn (6) over a finite volume (see e.g. Fig.1) and 
ication of the Gauss divergence Theorem yield a balance 
lving the rate of change in , face fluxes and volume-
rated net source. The transient term is approximated by the 
r implicit scheme for the purpose of this work, although 
r temporal schemes are also possible. 

φ

diffusion flux is approximated by central differences and can 
ritten for cell-face east (e) of the control volume in Fig. (1) 
 example as: 
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Fig.1: Finite volume and storage arrangement 



 
The discretization of the convective flux, however, requires 
special attention and is the subject of the various schemes 
developed. A representation of the convective flux is: 
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The value of the dependent variable  is not known and should 

be estimated using an interpolation procedure, from the values at 
neighbouring grid points. The details of how the interpolation is 
made is dealt with later, it suffices to say that the discretised 
equations resulting from each approximations take the form: 
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Where the  are coefficients the expressions for which are 
given later. 
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Normalized Variable Diagram 
Leonard [6] proposes a new way of describing the boundedness 
criterion for a differencing scheme used for pure advection 
problems, Called the Normalized Variable diagram (NVD). For 
any cell face, considering the direction of the convection, three 
nodes are selected: two nodes adjacent to the face (C, D) and the 
far upstream node (U), as shown in Fig.2. 
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Fig. 2: Node values in the normalized variable approach 
 

The locally normalized variable is defined as: 
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If the locally normalized variable is written for the value at the 
central node 
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All the differencing schem s could be written in the form: e
~ ( ~ )φ φf cf=  

Gaskell and Lau [2] show that the boundedness criterion for these 

schemes could be defined in the NVD diagram, showing as 

a function of   as a shaded region on Fig. 3 or with the 
following conditions:          
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Fig. 3:Boundedness criterion in the NVD diagram 
 

1) For 0 1,  is bounded by the function  and 

above by unity, and passes through the points (0,0) and (1,1). 
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 Development of the SBIC Scheme 
 we present the Second and Blending Interpolation 
bined (SBIC) scheme. Some parts of the new scheme have 

 shown in Fig. 4.   For  outside the interval [0,1] upwind 
rencing should be used. For the interval [k, 1] central 
rencing should be used. The parameter k (0< k < ½) should 
et to a fixed value, depending on how much of central 
rencing is used.  For the interval [0,k], a smooth function is 

, in fact the value of  is bounded by the values obtained 

 upwind and central differencing. It would be therefore ideal 
e some kind of blending between the two to obtain a good 
ation of the face value. The other conclusion that can be 
n are that the blending should be used over the whole 

val 0< < k and that the values of the blending factor 

ld be determined on the basis of , and . 
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Fig. 4:SBIC scheme in the NVD diagram 
 

limits on the select on of each value of k can be determined 
e following way. Obviously the lower limit is to keep k=0 , 
h would represent switching between upwind and central 
rencing. This should not be favored because, it is essential to 
d the abrupt switching between the schemes in order to 
ve the converged solution. The upper limit of k is 0.5, since 

presents the constant gradient and there is no need to use 
hing else than central differencing in that case. The value of 
ould be kept as low as possible in order to achieve the 
imum resolution of the scheme provided the selected value 
 not interfere with the convergence of the solution. 

vective Fluxes 
expression for momentum and energy fluxes in eqn (8) are 
mined by the NVD scheme used for interpolation from 
s at the neighbouring points. For new scheme, the value of 

ependent variable or  is calculated according to table φ f fφ~
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Table 1: The calculation of the  with SBIC scheme fφ~



 When all other fluxes at the various cell faces are calculated 
according to SBIC scheme, then they are introduced into the 
discretised equations (eqn. 9).  
 
Solution Algorithm 
Most contemporary pressure-based methods employ a sequential 
iteration technique in which the different conservation equations 
are solved one after another. The common approach taken in 
enforcing continuity is by combining the equation for continuity 
with those of momentum to derive an equation for pressure or 
pressure-correction. 
The present work employs the PISO technique (Issa [3]) in which 
the implicitly discretised equations are solved at each time step 
by a sequence of predictor and corrector steps. This scheme is 
especially efficient for unsteady flows, as it does not involve 
expensive iteration. For steady flows, time marching is effected 
until the steady state is reached. 
 
Results 
Both two-dimensional steady and one-dimensional transient 
flows are computed and the results are compared either with 
existing numerical solutions obtained by others or with the 
analytic solution when available. The test cases chosen are the 
normal benchmarks to which methods such as the one presented 
here are applied. The first case is that of the classical shock tube 
problem and the second is the bump-in-channel case. 
Fig. 5 shows the spatial distribution of pressure ratio, Mach 
number, density and velocity along the shock tube at a given 
instant in time in a shock-tube for an initial pressure of 10. The 
results of computation on a mesh of 100 nodes are compared 
with the analytic solution. It can be seen that the shock is sharply 
captured, the contact discontinuity is better resolved and 
oscillation is not relatively produced for the new NVD scheme. 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
(One) Pressure ratio distribution 

 
 
 
 
 

 
 
 
 
 
 

 
 (b) Mach No. Distribution 
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 (c) Velocity (m/s) distribution  
 
 

 
 

 (d) Density (kg/m3) distribution 
 

Figure 5:Shock-tube results for an initial pressure ratio  
P
P
H

L
= 10 at time t =6.0 0

re 6 shows the geometry of a 10% thick bump on a channel 
 with the mesh (66x18) to compute this steady two-
nsional inviscid flow case. 

Figure 6: Geometry 

 cases were considered for this geometry, one with Mach 
ber of 0.675 leading to transonic flow over the bump and the 
nd case with inlet Mach number of 1.6 resulting in a 
rsonic flow.  
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res 7(a) and 7(b) present the result of transonic flow for the 
 geometry. The results of this case is compared with those of 
and Javareshkian [4,5], which were carried out with a TVD 
me and the Ni [7] scheme is constructed by combining the 
iple-grid technique with the second order accurate finite 
me integration method for the Euler equation. It can be 
rved that the shock gradient is the same for all schemes. Fig. 
shows the results of the SBIC scheme for different k. It is 
rved that when k=0 is used, the shock is predicted with slight 
shoot and for k = 0.6, the shock is slightly smeared. Fig. 8 
s the results of the supersonic case. It is seen that TVD and 
 schemes capture sharp shocks at the leading edge but the 
 scheme is slightly smeares the shock at the trailing edge. 



The agreement between the two solutions is remarkable, thus 
once again verifying the validity of the present NVD scheme. 
                                                                                                         
                                                                                                          
                                                                          

(a)  Mach No. distribution 
                                                                  
                                            

                             
(b) Mach No. distribution for difference k 

                                                                     
Figure 7: Inviscid transonic flow over 10% thick 

bump in channel 
 
 

Figure 8: Inviscid supersonic flow over 10% 
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