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Abstract

I present a combined experimental and theoretical inves-
tigation of damped internal gravity waves in a stratified
fluid. Three parameters determine the flow behaviour —
the excitation frequency of the wavefield, the flow aspect
ratio, and a Reynolds number based on the strength of
the stratification and the flow depth. Damping is found
to be very significant for internal gravity waves of low
frequency (up to at least 0.01N , where N is the buoy-
ancy frequency) over a wide range of flow aspect ratios
and Reynolds numbers.

A theory that incorporates spatially uniform damping
of internal waves is compared with measurements. This
theory provides a significantly better description of the
wavefield than is possible with traditional theory, which
neglects damping.

Introduction

In stratified environments such as the atmosphere and
oceans, numerous mechanisms exist that locally disturb
surfaces of constant density from their equilibrium posi-
tion. As buoyancy forces seek to restore the local equilib-
rium, internal gravity waves are commonly radiated away
from the disturbed region. These waves transport both
energy and momentum vertically, and as such, represent
a very important process by which motion at different
levels in a stratified flow can be coupled.

In most geophysical flows the internal wavefield is sub-
ject to damping by the stresses arising from background
turbulence. LeBlond [1] first considered theoretically the
damping of internal waves in a turbulent fluid. He found
that the evolution of shorter wavelength waves are influ-
enced most by such damping.

In this study I use a novel experiment to examine the
damped wavefield. Wong, Griffiths & Hughes [3] showed
that vertical motion of the wave source relative to the am-
bient fluid selects a dominant internal wave mode. Here
the wavefield is maintained in a steady-state in the lab-
oratory frame of reference by the uniform vertical ad-
vection of ambient fluid past a time-invariant forcing. I
examine the damping characteristics of a range of inter-
nal wave modes by varying the rate of vertical advection.
This set-up is closely related to an oscillatory forcing in
a frame of reference fixed with respect to the fluid. Mea-
surements of the wavefield are compared with inviscid
theory and with a theory incorporating viscous damp-
ing.

Experiments

In all experiments, the tank shown in Figure 1 was lin-
early stratified with salt to a depth of approximately
30 cm using the ‘double-bucket’ method. The buoyancy

frequency N = (−g/ρ0dρ/dz)1/2 was chosen to be either
0.4 or 1.3 rad s−1. Here, dρ/dz is the background vertical
density gradient, g is the gravitational acceleration and

ρ0 is
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a reference density.

internal wavefield was excited in these experiments
e continued addition of fluid from the double-bucket
m into the float at the top of the stratification. The
of the float was a porous sponge, through which
ant input fluid percolated with zero vertical momen-

Thus the internal wave excitation consisted of a
y stress at the free surface due to the horizontal
w from the float.

was introduced at the top of the tank at several dif-
t flow rates. Meanwhile the valve at the tank base
pened to allow fluid to drain through the perme-
boundary. For each input flow rate the valve was
ted so that the tank depth was held constant. The
loss of the flow through the permeable boundary

large compared with that in the remainder of the
Vertical advection of fluid in the tank was there-
patially uniform.

e dimensionless parameters govern the behaviour in
xperiment:

the dimensionless vertical advection speed
wa

′ = wa/NH ,

the Reynolds number Re = NH2/ν, and

the flow aspect ratio L′ = H/L.

es are used here to denote dimensionless quantities;
the velocity at which fluid is advected vertically, H
tank depth, L is the tank length and ν is the fluid

sity. In these experiments L′ = 0.25, wa
′ was varied

een 1 × 10−5 and 3 × 10−4, and Re took values of
r 3.5 × 104 or 11.5 × 104.

horizontal velocity profile in the tank was visualised
leasing a series of vertical dye lines from the cen-
f the tank. A video record of the experiment was
subsequently to determine the vertical wavelength,
ave amplitude and the rate of attenuation of wave
n with height. I present only measurements of the
al wavelength in this paper.

nal waves are excited in this experiment by steady
g in a frame of reference fixed with the tank. These

s have vertical wavelength λ = 2π/m, where m is
ertical wavenumber. The equations describing the
formation between frames of reference that are fixed
respect to the tank and fixed with respect to the
relate the current set-up to an oscillatory forcing of
lar frequency

ω = wam (1)

is fixed relative to the fluid.

rvations

flow in all experiments evolved in a qualitatively
ar manner. Once the forcing at the surface was ini-



tiated, dye was observed to be advected strongly away
from the float by the horizontal outflow. Internal waves
radiated energy downwards from the surface forcing. A
perturbation in the vertical dye line developed a short
time later just below the outflow layer. This perturba-
tion grew to form a second layer that flowed in the oppo-
site direction to the outflow, i.e. towards the float. The
continued transport of energy by the wavefield gave rise
in turn to a series of alternately-signed perturbations in
the dye line that decay with depth. These perturbations
grew and formed a series of counterflowing layers, each
weaker than the one above.

The internal wavefield reached a steady-state following
the transient evolution just described. The subsequent
release of vertical dyelines showed the horizontal velocity
profile to maintain the same form, an example of which
is shown in Figure 2.

Measurements of the steady-state internal wavefield are
presented in Figure 3. The dimensionless vertical advec-
tion velocity w′

a is plotted as a function of the dimen-
sionless vertical wavelength λ/H . The data points show
a systematic dependence upon the Reynolds number Re.
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apparent that an increase in the vertical advection
ity wa, while holding L′ and Re constant, caused
ertical wavelength of the excited wave mode to in-
e. The ordinate in Figure 3 is equivalent to ω′/mH
scillatory forcing at dimensionless frequency ω′ in
ame of reference fixed with respect to the fluid. The
f amplitude attenuation with height is observed in
iments to decrease as wa increases.

ne of theory

et al. [3] observed a series of horizontal counter-
g layers (termed “shear layers”) in a plume filling
xperiment. They demonstrated that the shear lay-
rrespond to internal gravity wave modes whose ver-
phase velocity cy is approximately equal and oppo-
directed to the vertical advection velocity. I apply

ame criteria to predict the vertical wavelength of
al wave modes in this experiment.

ider first the inviscid dispersion relation for internal
(e.g. see Lighthill [2]),

ω′ =
k

(k2 + m2)1/2
, (2)
vertical dyeline
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Figure 1: Side-on view of experimental set-up. The tank was 120 cm in length, 8 cm in width and filled so that the depth
of fluid above the permeable boundary was 30 cm.

Figure 2: Visualisation of the horizontal velocity profile (side-on view of the tank) due to the steady-state internal
wavefield generated by the forcing at the free surface. The free-surface can be seen close to the top of the photograph.
Advection of the initially vertical dye line (superposed in white) has a short time later produced the oscillatory dye line
(also shown in white) whose amplitude decays with depth. The field of view corresponds approximately to the full flow
depth (30 cm) above the permeable boundary.



where ω′ = ω/N is the dimensionless frequency. Assum-
ing the density gradient to be constant and the vertical
advection to be spatially uniform, the requirement that
cy = wa may be written as

mH =

(
πL′

2

)1/2 [(
π2L′2 +

4

w′2
a

)1/2

− πL′
]1/2

. (3)

The horizontal wavenumber k is chosen to be π/L, which
corresponds to the lowest mode that gives zero hori-
zontal velocity at the vertical tank boundaries. Equa-
tion (3) will be found to give dimensionless wavelengths
λ/H = 2π/mH that are significantly smaller than those
observed in the w′

a regime of the current experiments.

Wong et al. [3] obtained the dispersion relation governing
linear internal waves in a viscous non-diffusive fluid with
uniform buoyancy frequency:

−iνωκ4 + ω2κ2 − N2k2 = 0, (4)

where κ = (k2+m2
ν)1/2 is the total wavenumber of a trav-

elling wave mode in a frame of reference that is fixed rela-
tive to the fluid and mν denotes the vertical wavenumber
in the viscous fluid. The wavefield is assumed to be two-
dimensional, with no variation across the tank width.

The general solution of equation (4) gives four complex
roots for κ, but only one root is physically realisable.
This root corresponds to wave modes that radiate energy
away from the forcing while decaying in amplitude. The
real part of the vertical wavenumber in this root may be
expressed in dimensionless form (see [3]) as

�(mνH) =
2π

λ/H

=

√
ω′Re

2

[
|X| − |β| sin

(
φ

2

)
− 2π2L′2

ω′Re

]1/2

, (5)
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X =

[(
|β| cos

(
φ

2

)
− 1

)2

+

(
|β| sin

(
φ

2

)
+

2π2L′2

ω′Re

)2
]1/2

, (6)

tanφ = −4π2L′2

ω′3Re
, −π/2 < φ ≤ 0, (7)

|β| =

[
1 +

(
4π2L′2

ω′3Re

)2
]1/4

. (8)

inviscid and viscous dispersion relations predicted
uations (3) and (5) are plotted in Figure 4 for sev-
ombinations of the parameters L′ and Re. Viscously
ed internal waves (dashed lines) show very different
ptotic behaviour at low frequency when compared
inviscid predictions (solid lines). This behaviour
t be anticipated on physical grounds. Momentum
port in the vertical due to viscosity will increase at
requency, thus acting to slow the natural frequency
illation compared with that in an inviscid fluid. The
usly damped regime is a strong function of flow as-
ratio L′ and Reynolds number Re, but is typically
rtant for values of ω′ up to O(10−2) or higher.

he effects of viscous damping become relatively
er the fluid motion, which is nearly horizontal at
requencies, is expected to be coupled over a region
ser vertical extent. Accordingly the breakpoint be-
inviscid and viscous behaviour in Figure 4 moves

wer frequency/higher wavenumber as Re increases
urves 3 and 4 with curve 1).

n the flow aspect ratio is decreased both the inviscid
iscous dispersion relations are shifted to the left in
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Figure 3: Comparison of theoretical predictions and experimental measurements for the dimensionless vertical advection
velocity as a function of dimensionless vertical wavelength: —— inviscid theory; Re = 3.5× 104, L′ = 0.25 - - - - theory,
◦ measurement; Re = 11.5 × 104, L′ = 0.25 · · · · · · theory, + measurement.



Figure 4. This behaviour occurs because the wavelength
of the assumed horizontal mode increases, i.e. the hori-
zontal wavenumber k = π/L decreases. Thus motion as-
sociated with a particular vertical wavenumber becomes
closer to horizontal in the frame of reference fixed with
the fluid and, by equation (2), the intrinsic frequency
of oscillation decreases. If the relative strength of vis-
cous damping is indicated by the range of frequencies in
which inviscid and viscous behaviour coincides, it is sur-
prising that viscous damping becomes relatively weaker
as the flow aspect ratio decreases (cf. curves 4 and 5 with
curves 1 and 2, respectively, in Figure 4). This behaviour
is the topic of further investigation.

The predictions of inviscid and viscous theory with
L′ = 0.25 are also plotted in Figure 3 for direct compar-
ison with experimental measurements. The solid curve
corresponds to equation (3) while the dashed and dotted
curves correspond to equation (5) with Re = 3.5 × 104

and 11.5×104 , respectively. As viscous damping becomes
stronger (i.e. Re decreases) it is apparent that the wave-
length of a given mode increases. This observation is con-
sistent with stronger vertical coupling of the wave motion
and with the decrease in natural oscillation frequency
noted in the discussion above. The theory incorporating
viscous damping provides much-improved predictions of
the internal wavefield compared with traditional inviscid
theory.

Conclusions

I have used both experiments and theory to examine the
characteristics of damped internal waves in a density-
stratified fluid. Damping is observed to modify the in-
ternal wavefield in two ways. First, the wave amplitude
decays with distance from the forcing. Second, for suf-
ficiently strong damping, the intrinsic frequency of wave
motion is reduced compared with that in an inviscid fluid.
The regime of strong damping exists for low frequency
wave motion over a wide range of flow aspect ratios and
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olds numbers. A theory that incorporates spatially
rm damping is in good agreement with the strongly-
ed internal wavefield observed in experiments.

damping in the current experiments is due to vis-
but the results have application to flows at much

r scales where the damping is most likely due to
round turbulence. However, the timescales upon
I anticipate damping to be most important are

to be comparable with the period of Earth’s rota-
Consequently I will undertake further work to study
ffect of damping on internal inertia-gravity waves.
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Figure 4: Comparison of dispersion relations from inviscid and viscous theory. Dimensionless frequency ω′ is plotted
as a function of the real part of the dimensionless vertical wavenumber �(mνH) for 1) L′ = 1, inviscid; 2) L′ = 0.01,
inviscid; 3) L′ = 1, Re = 103; 4) L′ = 1, Re = 105 and 5) L′ = 0.01, Re = 105.
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