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Abstract

The outline for a closure hypothesis to enable the com-
putation of the streamwise evolution of two-dimensional
turbulent boundary layers in arbitrary pressure gradients
is presented. Utilising the Coles [1] logarithmic law of
the wall and law of the wake formulation, in conjunction
with the mean continuity and mean momentum equa-
tions, the important non-dimensional parameters which
describe the state of a general non-equilibrium boundary
layer are identified. These parameters form the basis of
the closure hypothesis, which is achieved empirically from
experiments. The range of application of the proposed
scheme is examined by studying a zero-pressure-gradient
flow leading to a sink flow.

Introduction

The closure scheme of Marusic et al. [5] is based upon
classic similarity laws. These concepts provide a conve-
nient means to derive an analytical expression for shear
stress distribution. This expression, in turn, yields the
important non-dimensional mean flow parameters. The
relationship between these parameters is assumed to be
universal and is obtained experimentally. As existing
data is sparse, an interpolation and extrapolation scheme
is devised to compute the development of flows not al-
ready observed. The result is a pair of coupled first order
ODEs which allow the streamwise evolution of the layer
to be computed when the initial velocity profile and the
streamwise distribution of freestream velocity are known.

Closure Scheme

The mean velocity profile of a wall bounded turbulent
boundary layer is classically described by the Coles [1]
law of the wall and law of the wake formulation given by
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where it is generally assumed that κ is equal to 0.41 and
A is equal to 5.0. U is the mean streamwise velocity, Uτ is
the friction velocity, z is the distance normal to the wall,
ν is the fluid kinematic viscosity, Π is the Coles wake
factor which generally varies with streamwise distance,
Wc is the Coles wake function and η = z/δc, where δc is
the boundary layer thickness.

For analytical work, the wake function is expressed as a
polynomial. To ensure that the gradient ∂U/∂z = 0 at
η = 1 a corner function is required. Jones [3] introduced
the corner function −η3/3κ to achieve the required peel
off from the law of the wall, thus

U

Uτ
=

1
κ

ln
[
zUτ

ν

]
+A− 1

3κ
η3 +

Π
κ

2η2(3 − 2η). (2)

From this velocity distribution, the continuity equation
and the mean momentum equation, the expression for
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hear stress distribution is obtained;

0
= f1 [η,Π, S] + g1 [η,Π, S] ζ + g2 [η,Π, S]β. (3)

three functions f1, g1 and g2 are known universal
tical functions. ζ is the wake strength gradient pa-
ter given by ζ = SδcdΠ/dx and β is the Clauser
ure gradient parameter, β = (δ∗/τ0)(dp/dx), where
U1/Uτ is the skin friction parameter, U1 is the
ream streamwise velocity, x is the streamwise coor-
e, δ∗ is the displacement thickness of the boundary
, τ0 is the wall shear stress and p is the average pres-
From equation (3) the appropriate non-dimensional
eters for calculating the streamwise evolution of

urbulent boundary layer are Π, S, β and ζ.

eneral non-equilibrium flow, the closure problem be-
s one of considering the following relation

F [Π, S, β, ζ] = 0, (4)

ing that F is universal and only the four parame-
re required in its formulation.

perimental data is sparse, an interpolation and ex-
lation scheme is developed to obtain a formulation
. Consider the S−β plane for a fixed Π which con-
an experimental data point for which S, β, ζ and Π
ll known and from equation (3) τ/τ0 as a function
s also known. It is assumed the shear stress is fixed
two-parameter family of the form

τ

τ0
= f [η,Π, βa] . (5)
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igure 1: Fixed shear stress profile for a fixed Π.

erforming a curve-fit, the contour of a fixed shear
profile shape can be traced out. As S → ∞, β and
roach asymptotic values βa and ζa, respectively, as
n in figure 1. The process of keeping the profile
fixed is referred to as profile matching. The profile



matching is achieved by using least-squares approxima-
tion.

By repeating the profile matching procedure for different
values of Π, it is possible to map out lines of constant ζa

in the Π − βa plane and thus obtain a known function

ψ[Π, βa, ζa] = 0. (6)

This shear stress profile matching procedure produces
isosurfaces of ζ which can be mapped out in Π − β − S
space. Hence F [Π, S, β, ζ] = 0 is known.

Evolution Equations

Evolution equations, forming a set of first order ordinary
differential equations for S and Π, are obtained using
the logarithmic law of the wall, law of the wake and the
momentum integral equation.

The first evolution equation, derived from the momentum
integral equation together with the law of the wall and
law of the wake, is given by

dS
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=
χ [Rx, RL]R [S,Π, ζ, β]
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, (7)
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where Rx = xU0/ν, U0 is the freestream velocity at
some initial point Rx = 0 where x = 0, RL = LU0/ν
is the overall Reynolds number of the apparatus and
χ = U1/U0.

The evolution equation for Π is found from the definition
of ζ in conjunction with the law of the wall and law of
the wake, without reference to momentum balances, and
is given by

dΠ
dRx

=
ζχ [Rx, RL]

S2E [Π] exp [κS]
. (8)

The definition of β, along with equation (2), leads to an
auxiliary equation

S2E [Π] exp [κS]
1
χ2

dχ

dRx
= − β

C1 [Π]
. (9)

Equations (7) and (8) form a set of coupled first order
ODEs for S and Π and equation (9) is an auxiliary equa-
tion for β where χ is a known given function of Rx and
RL. Given equations (7), (8), (9) and the second auxil-
iary equation of F , it is possible to compute the evolution
of a boundary layer.
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Flow

study of sink flow turbulent boundary layers is of
cular interest as according to Townsend [7] and

[6] they represent the only flow case which will
e to precise equilibrium on a smooth wall. The
ream velocity distribution of a sink flow turbu-
boundary layer corresponds to that of a potential
Figure 2 shows the sink flow with a virtual sink of
gth Q located at a distance L from the origin.

Sink Q

U 0

Turbulent boundary layer

L

x

Figure 2: Sink flow.

sink flow, the acceleration parameter K =
2
1 )(dU1/dx) is a constant. When K is known, the
iary equation for β simplifies to an algebraic equa-
f the form

−β = KC1S
2E[Π] exp[κS]. (10)

following functional form of ψ[Π, βa, ζa] = 0 pro-
by Marusic et al. [5] is based upon the experimen-
ta of Jones [3] for equilibrium sink flow,

ζa = (0.85 − 6.9Π + 8Π2)∆βa (11)

e
∆βa = βa − βae

βae = −0.5 + 1.38Π + 0.13Π2

e βae is the value of βa for ζa = 0.

st be noted that for sink flow the evolution equa-
become autonomous and can therefore be displayed
S − Π phase plane where solution trajectories cross
at critical points. The coupled evolution equa-
(7) and (8) become autonomous by an appropriate
e in the variable Rx (i.e. Tx = − ln(1 −RxK)/K),
fore Rx does not appear explicitly. The autonomous
tion equations are therefore of the form

dS

dTx
= ψ1[Π, S,K],

dΠ
dTx

= ψ2[Π, S,K]. (12)

rimental Method

rimental data was obtained from boundary layer
urements taken in an open return blower wind tun-
The overall working section length was 5.4m. An
ressure existed at the beginning of the working sec-
allowing the initial pressure gradient to be con-
d by bleeding air from the central stream via a series
r adjustable louvres. A sink flow pressure gradi-

roduced by an inclined ceiling followed on from the
ed section. For the experiments, the louvres were
, resulting in a zero-pressure-gradient leading to

ink flow, as shown in figure 3. The reference loca-
x = 0 was at the commencement of the sink flow,



1.23m downstream from the beginning of the working
section, where a Pitot-static tube was fixed in the ceiling
to measure U0.

The required smooth wall turbulent boundary layer de-
veloped along a varnished and polished wood floor in
the louvred section and a smooth acrylic floor in the
favourable pressure gradient section. Care was taken to
ensure that the join between the two floors was smooth.

Mean velocity profiles were measured at two acceleration
levels, K = 5.39 × 10−7 and 2.70 × 10−7, using a Pitot-
static tube connected to a MKS Baratron manometer,
type 310CD-00010. The measurements were taken at 13
streamwise stations from x = −800mm (zero-pressure-
gradient flow) to x = 3600mm. The Pitot tube results
were corrected for shear by applying the MacMillan [4]
correction, i.e. an addition of 0.15d to locate the effective
centre of the Pitot tube, where d is the outer diameter of
the Pitot-tube (d = 1.0mm).

Results and Discussion

The mean velocity profiles were fitted to the law of the
wall and law of the wake formulation given by equation
(2). Figure 4 shows the good fit obtained when κ = 0.41
and A = 5.0.
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Figure 4: Mean flow results.
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igure 5: Evolution of the mean flow parameters.

oth flow cases, the profiles became self-similar at
ximately x/L = 0.57. (Note that L is the location
e virtual sink and was equal to 5.55m based upon
p distribution.) The evolution of the mean flow
eters is shown in figure 5 and it can clearly be seen

equilibrium was reached at approximately x/L =
For precise equilibrium, as defined by Rotta [6],
llowing conditions must be satisfied

constant,
dδc

dx
= constant, β = constant.
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Figure 3: Schematic of the working section with the louvres closed.



Also, Coles [2] proposed that a turbulent boundary layer
will evolve to an equilibrium solution of Π = 0, which
corresponds to ‘pure wall’ flow. For the sink flow experi-
ments conducted by Jones [3], only the K = 5.39 × 10−7

case achieved pure wall flow. In the present study, the
last three profiles for both K values satisfied the stated
equilibrium conditions beyond x/L = 0.57. Figure 5
shows that S, dδc/dx and β are all constant and Π = 0.

The momentum integral equation, given by

dθ

dx
+

(H + 2)θ
U1

dU1

dx
=
C′

f

2
, (13)

can be utilised to calculate the local coefficient of skin
friction at the equilibrium stations. For equilibrium sink
flow Rθ is constant and therefore equation (13) becomes

KRθ(H + 1) = C′
f/2. (14)

Table 1 shows the results for the last three stations from
the momentum balance using equation (14). Good agree-
ment exists between the momentum values for Uτ and the
Clauser chart values. The Preston tube values were lower
than the momentum values. This same trend was found
in the results of Jones [3].

K = 5.39 × 10−7

x(mm) Momentum Clauser chart Preston tube
Uτ m/s Uτ %ε Uτ %ε

3200 0.585 0.571 2.43 0.563 3.80
3400 0.634 0.617 2.63 0.608 4.058
3600 0.689 0.673 2.39 0.663 3.842

K = 2.70 × 10−7

x(mm) Momentum Clauser chart Preston tube
Uτ m/s Uτ %ε Uτ %ε

3200 1.070 1.059 1.01 1.045 2.32
3400 1.148 1.141 0.61 1.131 1.48
3600 1.306 1.288 1.37 1.269 2.82

Table 1: Comparison of Uτ from momentum balance,
Clauser chart and Preston tube.

It has been stated that the evolution equations for sink
flow are autonomous and the solution trajectories can be
displayed on a S − Π phase plane. Using the formula-
tion for ψ given by equation (11), the phase plane for
K = 2.70×10−7 was mapped out with solution trajecto-
ries only crossing at critical points. Figure 6 shows two
stable critical points and a saddle exist, however, the true
equilibrium solution is at Π = 0. The second stable node
and saddle are a result of applying the ψ formulation be-
yond its range of validity. Equation (11) is based upon
the experimental data of Jones [3] and thus applies to the
associated Π − ζa − βa functional space, where the range
for Π is from 0.0 to 0.3.

Marusic et al. [5] showed that good agreement exists
between the experimental data of Jones [3] and the pre-
dicted evolution of the mean flow parameters using equa-
tion (11). Shown in figure 6 are the sink flow results
from the current study. Within the restricted space for
which the formulation (11) is valid, the experimental data
agrees well with the theoretical evolution trajectories. To
compute the evolution for the current K = 2.70 × 10−7

flow case, the initial conditions chosen were those at
x/L = 0.144. The conditions at earlier stations sent
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d solution trajectory using initial conditions from
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olution trajectory shooting up to the second crit-
oint. This sensitivity to the initial values of S and
s due to the proximity of the saddle node. In other
s, being close to the border of Jones’ [3] restricted
ional space where Π = 0.3.

lusion

resent work describes a framework for formulating
re for a turbulent boundary layer evolving in an ar-
ry pressure gradient. The mathematical machinery
rking and in the Jones [3] restricted Π−ζa−βa func-
l space equation (11) is a valid estimate. However,
re robust and generally more applicable functional
of ζa is needed. To achieve this, more experimental
is required.
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