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Abstract

The stability of oscillatory thermocapillary (Marangoni) con-
vection of electrically conducting fluid layers heated from be-
low under the influence of a uniform vertical magnetic field is
investigated numerically using linear stability theory. In par-
ticular we present an example of a situation in which there is
competition between modes at the onset of convection when the
layer is heated from below.

Introduction

The onset of thermocapillary-driven (Marangoni) convection in
a layer of fluid which is heated (or cooled) from below is a fun-
damental model problem for several material processing tech-
nologies, such as semiconductor crystal growth from melt, in
microgravity conditions. As Schwabe [8] describes, typically
in microgravity, thermocapillary rather than buoyancy forces
are the dominant mechanism driving the flow. Since the melts
involved are often of electrically-conducting material, such as
silicon, the technological need to postpone (or indeed eliminate
entirely) the onset of undesirable convective motions has moti-
vated considerable interest in studying the effect of externally-
imposed magnetic fields on the onset of Marangoni convection.
The motion of the electrically conducting melt under a mag-
netic field induces electric currents. Lorentz forces, resulting
from the interaction between the electric currents and the mag-
netic field, affect the flow.

The effect of an externally-imposed uniform vertical magnetic
field on the onset of Marangoni convection in a horizontal layer
of electrically-conducting fluid was first addressed by Nield
[7]. One of the most important dimensionless parameters is the
Marangoni number (the ratio of surface tension gradients to vis-
cous forces). Nield [7] studied the onset of steady Marangoni
convection in the case of a flat free surface and showed that in-
creasing the magnetic field strength has the stabilising effect of
monotonically increasing the critical Marangoni number for the
onset of convection. Wilson [9, 10, 11] derived explicit ana-
lytical expressions for the asymptotic behaviour of the critical
Marangoni number and the corresponding critical wave number
for the onset of steady convection in the limit of large magnetic
field strength.

There has been much less work on the effect of a uniform mag-
netic field on the onset of oscillatory Marangoni convection.
Wilson [9] investigated the case P1

� P2
� 1 (where P1 and

P2 are the Prandtl number and the magnetic Prandtl number re-
spectively) in detail numerically and concluded that, just as in
the non-magnetic case, oscillatory convection is possible only
when the layer has a deformable free surface and is cooled from
below (M � 0), and that the effect of increasing the magnetic
field strength is always a stabilising one. In addition, Wilson
[9] conducted an unsuccessful numerical search for oscillatory
convection for a range of parameter values when the layer is
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from below (M � 0), from which he concluded that no
onvection was possible. However, in an important paper,

ame and Lebon [5] demonstrated that this conclusion was
ture by showing that, even in the simplest case of a fluid
with a flat free surface and perfectly electrically conduct-
oundaries, there are situations with M � 0 in which os-
ry convection not only occurs but is actually preferred to
convection at the onset of instability. Motivated by their

rical results Kaddame and Lebon [5] suggested that os-
ry convection is possible only if P1

� P2. Unfortunately,
ame and Lebon’s [5] solution for the onset of oscillatory
ction is in error and has been reexamined and extended by
m and Wilson [3]. However, one of the most important
s of Hashim and Wilson [3] is that Kaddame and Lebon’s
nclusion that oscillatory Marangoni convection is possible

P2 is indeed correct.

citing recent development is the growth of interest in un-
nding how the nonlinear competition between different
s can lead to pattern formation near or at the onset of
ction. For example, Johnson and Narayanan [4] studied
imentally thermocapillary- and buoyancy-driven convec-

a layer of silicone oil with an upper air gap, which was
between two plates, near a “codimension-two” point at
two steady modes coexist. Johnson and Narayanan [4]

ved a dynamic switching between two different flow pat-
near this point. VanHook et al. [12] investigated exper-
ally the formation of thermocapillary-dominated convec-
atterns in a thin layer of silicone oil bounded below by a

rigid plane boundary and above by an air layer. Specif-
, VanHook et al. [12] observed that both the long- and
wavelength (hexagonal) modes can coexist for a range
uid depths. VanHook et al. [12] observed that the pres-
of the hexagons suppresses the long-wavelength mode,
the presence of the long-wavelength mode may induce
rmation of hexagons. Motivated in part by these results,
in et al. [1] recently studied theoretically the nonlinear

tion and secondary instabilities of Marangoni convection
wo-layer liquid-gas system with a deformable liquid-gas
ace, bounded from below and from above by rigid plates.
in et al. [1] derived a system of amplitude equations de-

ng the evolution of a short-wave mode and its interaction
he long-wave mode. The equations they obtained are valid
both instability modes coexist.

work we use classical linear stability theory to investigate
mpetition between modes at the onset of thermocapillary-
convection in a horizontal layer of quiescent, electrically

cting fluid heated from below in the presence of a uni-
vertical magnetic field. In particular, we found for the first
situation in which there exists a competition between two
and one oscillatory modes at the onset of convection in

se of a deformable free surface. The results in this work
d some of the numerical results of Hashim and Wilson [3]



who studied the idealistic case of a flat free surface.

Problem Formulation

Subject to the Boussinesq approximation, the governing equa-
tions for an incompressible, electrically conducting, Newtonian
fluid in the presence of a magnetic field, with buoyancy forces
in the bulk of the fluid neglected are

∇ � U � 0 � (1)
∇ � H � 0 � (2)
DU
Dt

��� 1
ρ

∇Π � ν∇2U � µ
4πρ

�
H � ∇ 	 H � (3)

DH
Dt

� �
H � ∇ 	 U � η∇2H � (4)

DT
Dt

� κ∇2 T 
 (5)

Here D � Dt � ∂ � ∂t � U � ∇, U is the fluid velocity, H is the mag-
netic field, T is the temperature and Π � p � µ �H � 2 � 8π is the
magnetic pressure, where p is the fluid pressure. The constant
properties of the fluid are represented by the fluid density ρ, the
kinematic viscosity ν, the magnetic permeability µ, the electri-
cal conductivity σ, the electrical resistivity η � 1 � 4πµσ and the
thermal diffusivity κ.

We wish to examine the stability of a horizontal layer of quies-
cent fluid of thickness d subject to an externally-imposed uni-
form vertical magnetic field of strength H and a uniform verti-
cal temperature gradient. To do this we choose rectangular axes
with the x- and y-axes in the plane of the lower rigid boundary
and the z-axis vertically upwards so that the lower boundary is
given by z � 0 and in the undisturbed state the free surface is
located at z � d. When motion occurs the free surface will be
deformed and then we denote its position by z � d � f

�
x � y � t 	 .

The layer of fluid is bounded below by a perfectly thermally
conducting planar rigid boundary maintained at a constant tem-
perature T1 and above by a free surface initially at constant tem-
perature T2, which is in contact with a passive gas at constant
pressure p0 and constant temperature T∞. The surface tension
of the free surface τ is taken to be dependent on the tempera-
ture T according to the simple linear law τ � τ0

� γ
�
T � T2 	 ,

where τ0 is the value of τ when T � T2, and the constant γ is
positive for most fluids. At the free surface we have the usual
kinematic condition and conditions of continuity of the normal
and tangential stresses, and the temperature obeys Newton’s law
of cooling, � k∂T � ∂n � h

�
T � T∞ 	 , where k and h are the ther-

mal conductivity of the fluid and the heat transfer coefficient
between the free surface and the air, respectively, and n is the
outward unit normal to the free surface. At the lower, rigid and
plane, boundary we have the no-slip boundary condition. For
simplicity, we follow Kaddame and Lebon [5] and assume that
the media above and below the fluid are both perfect electrical
conductors, i.e. no magnetic field can cross the boundary.

We shall investigate the linear stability of a basic state in which
the fluid is at rest, U  0, the free surface is flat, f  0, the tem-
perature gradient across the layer is uniform, T

�
z 	 � T1

� βz,
where β � �

T1
� T2 	�� d, the magnetic field is uniform, H ��

0 � 0 � H 	 , and the pressure is constant. To simplify the analysis
we non-dimensionalise the variables using the scales d, d2 � ν,
ν � d, βdν � κ, νH � η for length, time, velocity, temperature and
magnetic field respectively. As a result the following dimen-
sionless group arise: the Marangoni number M � γβd2 � ρνκ,
the Chandrasekhar number Q � µH2d2 � 4πρνη, the capillary
number Cr

� ρνκ � τ0d, the bond number Bo
� ρgd2 � τ0, where

g is acceleration due to gravity, the Biot number Bi
� hd � k,

the Prandtl number P1
� ν � κ and the magnetic Prandtl number

P2
� ν � η. Note that this choice of scaling was chosen for con-
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cy with the work of Kaddame and Lebon [5], but differs
that of Wilson [9, 10, 11] who used the notation Pr

� P1 for
andtl number and Pm

� P1 � P2 for an alternative magnetic
tl number. However, the latter formulation can easily be
ered by multiplying the present time, velocity, temperature
agnetic field variables by 1 � P1, P1, P1 and P2 respectively.

rised Problem

nalyse the linear stability of the basic state in the
manner by seeking perturbed solutions for any quantity� z � t 	 in terms of normal modes in the form

Φ
�
x � y � z � t 	 � Φ0

�
x � y � z 	�� φ

�
z 	 ei � αx � βy � � st � (6)

Φ0 is the value of Φ in the basic state and a � �
α2 �

2 is the total horizontal wave number of the disturbance.
nknown temporal exponent s will, in general, be complex.

ituting into equations (1)–(5) and neglecting terms of
cond and higher orders in the perturbations we obtain
rresponding linearised equations involving only the z-
dent parts of the perturbations to the temperature and the
ponents of the velocity and the magnetic field, denoted by
nd hz respectively, namely�

D2 � a2 � sP1 	 T � w � 0 � (7)�
D2 � a2 � sP2 	 hz � Dw � 0 � (8)�

D2 � a2 	�� � D2 � a2 � s 	 w � QDhz � � 0 � (9)

the operator D � d � dz denotes differentiation with re-
to z. The corresponding linearised boundary equations

s f � w � 0 � (10)

P1Cr � � D2 � 3a2 � Q � s 	 Dw

� sP2Qhz � � a2 � a2 � Bo 	 f � 0 � (11)

P1
�
D2 � a2 	 w � a2M

�
P1T � f 	 � 0 � (12)

hz
� 0 � (13)

P1DT � Bi
�
P1T � f 	 � 0 � (14)

1 and

w � 0 � (15)
Dw � 0 � (16)

hz
� 0 � (17)

T � 0 � (18)

0.

ion of the Linearised Problem

omplete solution of the linear stability problem is deter-
once we have solved equations (7)–(9) subject to the

ary conditions (10)–(18).

general case s �� 0 we proceed in the same manner as
n [9] and seek solutions in the forms

w
�
z 	 � ACeξz � (19)

hz
�
z 	 � BCeξz � (20)

T
�
z 	 � Ceξz � (21)

the complex quantities A, B and C and the exponent ξ are
determined. Substituting these forms into the equations



(7)–(9) and eliminating A, B and C we obtain an eight-order
algebraic equation for ξ, namely�

ξ2 � a2 	 � ξ2 � a2 � sP1 	��� � ξ2 � a2 � s 	 � ξ2 � a2 � sP2 	 � Qξ2 � � 0 � (22)

with eight distinct roots ξ1 ��
�
�
�� ξ8. Denoting the values of A, B
and C corresponding to ξi for i � 1 ��
�
�
�� 8 by Ai, Bi and Ci we
can use equations (7) and (8) to determine Ai and Bi to be

Ai
��� � ξ2

i
� a2 � sP1 	�� (23)

Bi
� ξi

�
ξ2

i
� a2 � sP1 	

ξ2
i
� a2 � sP2

� (24)

for i � 1 ��
�
�
�� 8. We can use equation (11) to eliminate the free
surface deflection

f � P1Cr � � D2 � 3a2 � Q � s 	 Dw � sP2Qhz �
a2 � a2 � Bo 	 �

evaluated on z � 1, leaving the eight boundary conditions (10),
(12)–(18) to determine the eight unknowns C1 ��
�
�
�� C8 (up to
an arbitrary multiplier), and the general solution to the stabil-
ity problem is therefore

w
�
z 	 � 8

∑
i � 1

AiCieξiz �
hz
�
z 	 � 8

∑
i � 1

BiCieξiz �
T
�
z 	 � 8

∑
i � 1

Cieξiz 

The dispersion relation between M � a, s, Cr, Q, Bo and Bi is de-
termined by substituting these solutions into the boundary con-
ditions and evaluating the resulting 8 � 8 complex determinant
of the coefficients of the unknowns, which can be written in the
form M ��� D1 � D2, where the two 8 � 8 complex determinants
D1 and D2 are independent of M.

In the special case s � 0 (corresponding to the onset of steady
convection) the magnetic field hz can be eliminated entirely
from the problem. As a consequence the magnetic boundary
conditions do not have to be imposed and so the same proce-
dure as that outlined above in the general case s �� 0 yields an
equation for M in terms of two 6 � 6 real determinants which
are independent of M, P1 and P2.

The marginal stability curves in the
�
a � M 	 plane on which

Re
�
s 	 � 0 separate regions of unstable modes with Re

�
s 	 � 0

from those of stable modes with Re
�
s 	 � 0. In all the cases

investigated in the present work M � 0 and the region above
the marginal stability curve corresponds to unstable modes and
the region below the curve corresponds to stable modes. Hence
the critical Marangoni number for the onset of convection, de-
noted by Mc is simply the global minimum of M on the marginal
curves. The corresponding critical values of ω � Im

�
s 	 and a

are denoted by ωc and ac respectively. If ωc
� 0 then the onset

of convection is steady and if ωc �� 0 then it is oscillatory. The
marginal stability curves are calculated by setting Re

�
s 	 � 0 and

solving the complex equation D1 � MD2
� 0 for the values of ω

and M on the marginal curve. This procedure was implemented
numerically using NAG routine F03ADF.

Numerical Results

In this section we shall present the numerical results which
show the existence of competition between modes at the onset
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vection in the presence of free surface deformation and a
etic field.

re 1 we reproduce Hashim and Wilson’s [3] numerically-
ated marginal stability curves which give an example of
ation in which two different modes coexist at the onset of
ction in the case of a flat upper surface Cr

� 0, Q � 250,
1 and Bi

� 0. In the case investigated the two modes occur
taneously when P2c ! 12 
 92.
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e 1: Numerically-calculated marginal stability curves near
itical value P2c for a range of values of P2 in the case
, Q � 250, P1

� 1 and Bi
� 0.

near stability of steady thermocapillary-driven convection
case of deformable free surface with a magnetic field was
d by Wilson [9] when P1

� P2
� 1. Figure 2 shows typical

rically-calculated marginal stability curves for a range of
of P2 in the case Cr

� 10 7 4, Q � 250, P1
� 1, Bo

� 0 
 1
i
� 0. We note that in the case studied convection first sets

oscillatory instabilities. Whereas figure 3 shows that con-
n first sets in as steady instabilities in the case Cr

� 10 7 3 ,
50, P1

� 1, Bo
� 0 
 1 and Bi

� 0. The results presented in

8�9;:=<3>8�9;:=?3>8�9;:A@3B8�9;:A@ >

C E >FG<@>

@ >3>H>E F3>H>E G3>H>E <3>H>E @ >H>E >3>H>F3>H>G3>H><3>H>@ >H>>
e 2: Numerically-calculated marginal stability curves for
e of values of P2 in the case Cr

� 10 7 4 , Q � 250, P1
� 1,

0 
 1 and Bi
� 0.

s 2 and 3 suggest an alternative possibility which, to the
nowledge of the authors, has not been identified before
a magnetic field is present, namely competition between

different modes. We found two steady modes and an oscil-
mode all occur simultaneously at the onset of convection
case Cr

� 1 
 75 � 10 7 4 , Q � 250, P1
� 1, Bo

� 0 
 1 and
0. We note that in the case investigated the three modes
st when P2c ! 13 
 38, and the critical wavenumber on the
atory branch is larger than the critical wavenumber for the

mode. The critical Marangoni number for the long-wave
mode is in complete agreement with the analytical ex-

on obtained by Wilson [9] in the limit a I 0. Similar



J�K�L=M3NJ�K�LAO3PJ�K�LAO N
Q

R

S NTUVON

S O NHN
S N3NHN
T3NHN
U3NHN
V3NHN
O NHN
N

Figure 3: Numerically-calculated marginal stability curves for
a range of values of P2 in the case Cr

� 10 7 3 , Q � 250, P1
� 1,

Bo
� 0 
 1 and Bi

� 0.

competition between three different modes was recently found
by Hashim [2] for the buoyancy- and thermocapillary-driven
convection without a magnetic field.

W�XZY\[ ]_^ `W�XZY\[ ]_^ ]ba cW�XZY\[ ]_^ ]
d

e
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Figure 4: Numerically-calculated marginal stability curves for
a range of values of P2 in the case Cr

� 1 
 75 � 10 7 4 , Q � 250,
P1
� 1, Bo

� 0 
 1 and Bi
� 0.

Conclusions

In this work we used classical linear stability theory to inves-
tigate the competition between modes at the onset of thermo-
capillary convection in a horizontal planar layer of fluid heated
from below in the case of a deformable free surface and in the
presence of a magnetic field. The linear analysis presented in
this work revealed for the first time a situation in which two
steady modes and an oscillatory mode compete at the onset of
convection. The answer as to which of these modes dominates
the flow certainly warrants a further weakly nonlinear analysis.
It would be very interesting to attempt an experimental verifica-
tion of the novel feature revealed by the analysis in this paper.
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