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Abstract

We consider the linear stability of a boundary-layer flow
over a permeable flat plate under conditions of intense
interfacial mass transfer. The stability of the flow is gov-
erned by an Orr-Sommerfeld type equation coupled to a
second-order differential equation for the concentration
disturbance field through a flux boundary condition at
the permeable surface. This is solved to determine the
regions of parameter space in which the flow is linearly
unstable. In particular, the critical Reynolds number for
the flow is obtained.

Introduction

Porous media surround us everywhere, in reactors of all
kinds, almost every possible chemical engineering pro-
cess, in aeronautics, in waste disposal, in aquifers, in fos-
sil fuel deposits, in the high intensity heat and interfacial
mass transfer processes. We shall study diffusion driven
flows in porous media in terms of a permeable, two-phase
system in which fluid flows over a solid surface. Our at-
tention will focus on the effect of diffusion on the hydro-
dynamic stability of the boundary layer that typically
arises in high Reynolds number flows over porous sur-
faces.

According to thermodynamics of irreversible processes
there will be a contribution to each flux in the system
from each driving force in the system. However, the most
important contribution to the mass flux is that resulting
from the concentration gradient [2]. Here we will assume
that the mass flux is a result only of a concentration
gradient and neglect the other two potential mechanical
driving forces - the pressure gradient and the external
forces acting unequally on the various chemical species.
This will allow us to focus on the effect of the diffusion-
induced normal flux on the stability of the boundary-
layer flow.

The problem of the boundary-layer flow under condi-
tions of interfacial mass transfer, governed by the clas-
sical Prandtl equations, the laminar boundary layer
convection-diffusion equation and the steady heat trans-
fer equation was first treated by Hartnett & Eckert [8].
The boundary-layer equations were solved subject to con-
ditions that took into account foreign fluid injection (with
blowing velocity V (x, 0) �= 0) at a permeable surface.

When V (x, 0) ∼ x−1/2 it was shown that the flow de-
velops in a self-similar fashion and that the velocity and
temperature profiles are greatly influenced by “suction”
and “blowing”.

We consider a slightly different problem here, namely the
Blasius boundary-layer flow over a semi-infinite, perme-
able, flat plate across which a concentration gradient ex-
ists. In this case the mass transfer is driven by molec-
ular diffusion and the concentration profile within the
boundary layer is dynamically linked to the momentum
transport within the flow. For simplicity, we assume that

there
on th
radia
netic
of sp
tratio
A an

Form

Cons
ible fl
which
differ
The
of th

wher
ficien
and ∂
in the
(see I

We d
a dim

(

C

wher
along
corre
tion,
the le
C∗

0 th
non-d

Thes

and b

Here
is the

199
n boundary-layer stability

. Denier

thematics
, 5005 AUSTRALIA

is no chemical reaction and no external forces acting
e flow; we also neglect emission and absorption of
nt energy into the boundary layer (see [2]). The ki-
s of this model then describes, for example, the flow
ecies with different surface and free-stream concen-
ns, as occurs in a binary mixture of chemical species
d B flowing over a porous surface.

ulation

ider then the laminar flow of a viscous incompress-
uid over a flat, semi-infinite, permeable plate across
a concentration gradient exists. The concentration

ence induces a mass flux at the permeable surface.
rate v∗

n of the induced flow can be defined in terms
e mass flux through the surface as

v∗
n = −MD

ρ∗
∂C∗

∂n
, (1)

e M is the molecular mass, D is the diffusion coef-
t, ρ∗ the density of the fluid, C∗ the concentration
/∂n the derivative normal to the permeable surface;
case of the flat-plate boundary layer ∂/∂n = ∂/∂y∗

ncropera & DeWitt [9]).

efine non-dimensional variables (an asterisk denotes
ensional quantity)

x∗, y∗) = L(x, y), t∗ =
Lt

U∞
, (U∗, V ∗) = U∞U,

∗ = C∗
∞ + (C∗

0 −C∗
∞)C P ∗ = ρ∗U2

∞P.

e x∗ and y∗ denote Cartesian coordinates aligned
and normal to the plate surface, U∗ and V ∗ the

sponding velocity components, C∗ the concentra-
L a typical length (for example, the distance from
ading edge of the plate), U∞ the free-stream speed,
e concentration at y∗ = 0 and C∗

∞ at y∗ = ∞. The
imensional equations governing the flow are

∇ · U = 0, (2a)

∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∇2U, (2b)

∂C

∂t
+ (U · ∇)C =

1

ScRe
∇2C. (2c)

e must be solved subject to the initial conditions

U = (1, 0), C = 1 at x = 0

oundary conditions

U =

(
0,− θ

Sc Re

∂C

∂y

)
, C = 1 on y = 0; (3)

U → (1, 0), C → 0 as y → ∞. (4)

Re = U∞L/ν is the Reynolds number, Sc = ν/D
Schmidt number and θ = M(C∗

0 − C∗
∞)/ρ∗ is a



parameter which characterises the intensity of the mass
transfer across the permeable surface [3].

The boundary-layer flow

In the limit of large Reynolds number the flow develops
a boundary layer of thickness O(Re−1/2) attached to the
leading edge of the plate. Introducing boundary-layer
variables

y = Re−1/2Y, U = UB , V = Re−1/2VB , C = CB , (5)

where y is physical coordinate and Y the boundary-layer
coordinate, the steady boundary-layer equations are

∂UB

∂x
+

∂VB

∂Y
= 0, (6a)

UB
∂UB

∂x
+ VB

∂UB

∂Y
=

∂2UB

∂Y 2
, (6b)

∂PB

∂Y
= 0, (6c)

UB
∂CB

∂x
+ VB

∂CB

∂Y
=

1

Sc

∂2CB

∂Y 2
. (6d)

For simplicity, we have assumed that the free-stream
speed is uniform in which case ∂PB/∂x = 0. The bound-
ary conditions appropriate to this system are, from (3),

UB = 0, VB = − θ

Sc

∂CB

∂Y
, CB = 1 on Y = 0; (7)

UB → 1, CB → 0 as Y → ∞. (8)

Noting that CBY (0) < 0, the mass transfer has the effect
of proscribing a suction or blowing velocity at the surface,
depending upon whether θ is negative or positive. Our
concern is with how this diffusion-driven mass transfer
affects the hydrodynamic stability of the flow.

Figure 1: Graphs of f ′′(0) and g′(0) versus θ for different
values of Sc.

In what follows we will employ a similarity solution to
the boundary-layer equations as our “basic flow”. Intro-
ducing the similarity variable η = Y/x1/2 we find that
the boundary-layer equations admit similarity solutions
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e form

B = f ′(η), VB =
1

2
√

x
(ηf ′ − f), CB = g(η), (9)

e the functions f and g are solutions of

f ′′′ +
1

2
ff ′′ = 0, g′′ +

Sc

2
g′f = 0 (10)

ct to the boundary conditions

f(0) =
2θ

Sc
g′(0), f ′(0) = 0, g(0) = 1; (11)

f ′(∞) = 1, g(∞) = 0. (12)

tailed description of the quantitative effect of the
transfer on the boundary-layer flow can be found
yadjiev & Vulchanov [5] who demonstrated that the
dary flow, with flow rate f(0), does not change the
tative character of the boundary-layer flow but sim-
rves to modify the shape of the velocity profile f ′(η)
gh the change in the value of the skin friction; see
he plots of reduced skin friction f ′′(0) and wall con-
ation gradient g′(0) in Fig. 1.

rized instability of the boundary layer flow

der to consider the linear stability of the flow we su-
pose an infinitesimally small two-dimensional dis-
nce on the basic boundary-layer flow. In this case
otal flow field is written as

, P,C) = (UB, Re−1/2VB, PB, CB)+ε(u, v, p, c)+. . . .

e ε is the infinitesimally small disturbance ampli-
In order to obtain the equations governing the

rbance amplitude we write

(u, v, c) = (F ′(y),−iαF (y), iαG(y)]eiα(x−ct),

efine

F (n)(y) = δn
∗ ϕ(n)(η), G(n)(y) = δn

∗σ
(n)(η)

e δ∗ = 1.720Re/Rδ and Rδ = 1.720(xRe)1/2 is
eynolds number based on the local boundary layer
ness. Here 2π/α is the streamwise wavelength of the
rbance and c = cr + ici is the complex wavespeed
e determined). The disturbance equations reduce

− c
)
D2ϕ − f ′′′ϕ =

720i

Rδ

{
D4ϕ − 1

2

[(
ηf ′ − f

)
D2 −

(
ηf ′′′ + f ′′)]ϕ′

}
,

− c
)
σ + ig′ϕ = −1.720i

ARδ

{
1

Sc
D2σ − 1

2

(
ηf ′ − f

)
σ′

}
,

e

D2 =
∂2

∂η2
− A2

= α/δ∗. This system must be solved subject to
oundary conditions

ϕ(0) =
1.720θ

ScRδ
σ′(0), ϕ′(0) = 0, σ(0) = 0;

ϕ(∞) = 0, ϕ′(∞) = 0, σ(∞) = 0.

preceding equations, together with their boundary
tions, constitutes an eigenvalue problem for cr as a



function of A and Rδ. The relationship between Rδ and
x can be interpreted as follows; in determining a critical
Reynolds number Rδ (beyond which the flow is unstable)
we will, in effect, be determining a critical position xcrit

at which the boundary layer becomes linearly unstable
to wave-like disturbances.

The disturbance equations are coupled, not through the
field equations but through the inhomogeneous boundary
condition on the vertical disturbance velocity ϕ(0). Pre-
vious work on this problem by Boyadjiev and co-workers
[3, 4, 6] assumed that the parameter θ was small and thus
the boundary condition relating ϕ(0) to the disturbance
concentration gradient could be approximated by ϕ = 0.
This assumption has the appealing effect of decoupling
the momentum and concentration fields for the distur-
bance thus resulting in a classical Orr-Sommerfeld eigen-
value problem for the complex wave-speed c. This ap-
proximation, although capturing the effect of mass trans-
fer on the boundary-layer flow, cannot correctly account
for the forcing of the disturbance momentum transport
due to the diffusion through the permeable surface. We,
however, retain the full coupling of the disturbance fields
here.

The solution procedure for the eigenvalue problem is a
modification of that developed by Keller [10] and full
details can be found in [7].

Results and discussion

Representative curves of neutral stability in (Rδ, A) and
(Rδ, cr) plane are presented in Figures 2 - 3. Consider
firstly the results for a Schmidt number of 0.7 presented
in Figure 2. Following the usual convention the curves

Figure 2: Curves of neutral stability at Sc = 0.7 for
different values of θ.

of neutral stability delineate the boundary in the param-
eter space between stable and unstable disturbances; the
flow is unstable for values of the parameter that lay inside
the neutral curve. From Figure 2 we see that the effect of
positive mass transfer (i.e. blowing) is to reduce the crit-
ical Reynolds number and consequently destabilise the
boundary layer; the point of neutral stability therefore
moves towards the leading edge of the plate which hints
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e 3: Curves of neutral stability at Sc = 100 for
ent values of θ.

earlier transition to turbulence within the flow.
conclusion is in agreement with that made in the
of Boyadjiev et al. [3, 4, 6] but corrects the errors
arise due to the erroneous decoupling of the dis-

nce momentum and concentration fields. We note
for the present case (Sc = 0.7), the critical Reynolds
er, for a value of θ = −0.3, is 2.19264×103 as com-
to the value of 2.23226×103 predicted by the anal-
f [3] whereas for θ = 0.3 the respective values are
018 × 102 (current results) and 2.18419 × 102 (re-
of [3]). Further from Figure 2 we observe that blow-
rves to increase the critical wavenumber and wave-
. These general conclusions also hold for higher
s of the Schmidt number as is seen from Fig. 3.
hanges in the critical Reynolds number, wavenum-
nd wave-speed as a function of θ are summarised in
s 1 - 2.

Sc = 0.7

θ Rδ × 103 A cr Amin cr min

3 2.1926 0.151 0.3116 0.1672 0.3130
2 1.2196 0.160 0.3462 0.1825 0.3481
1 0.7462 0.170 0.3772 0.1956 0.3795
0 0.5000 0.177 0.4028 0.2083 0.4061
1 0.36102 0.184 0.4242 0.2198 0.4283
2 0.27633 0.188 0.4414 0.2300 0.4470
3 0.22100 0.192 0.4563 0.2390 0.4626

1: Values of critical Reynolds number Rδ, corre-
ing wave velocity cr, wave number A and Amin and
at Sc = 0.7.

e results suggest that, in the range of Reynolds num-
and mass-transfer rates considered, at high Schmidt
ers Sc, the coupling effect has a relatively minor
in the instability process (Fig. 3). This is a sim-
onsequence of the factor Sc−1 appearing in the
dary condition which forces the vertical momentum
port. However, at low to “moderate” values of the
idt number, the effect of coupling is considerable
ust be taken into account if a reasonable and ac-



curate estimate of the critical parameter values is to be
obtained.

Sc = 100

θ Rδ × 103 A cr Amin cr min

-0.3 0.5264 0.174 0.3985 0.2065 0.4027
-0.2 0.5161 0.175 0.4001 0.2072 0.4040
-0.1 0.5078 0.180 0.4029 0.2078 0.4051
0.0 0.5000 0.177 0.4028 0.2083 0.4061
0.1 0.4935 0.178 0.4038 0.2087 0.4070
0.2 0.4878 0.178 0.4045 0.2091 0.4078
0.3 0.4827 0.179 0.4055 0.2094 0.4085

Table 2: Values of the critical Reynolds number Rδ, cor-
responding wave velocity cr, wave number A and Amin

and cr min at Sc = 100.

Conclusions

At fixed values of the Schmidt number Sc, a change in
the direction of the mass transfer (i.e. from blowing θ >
0 to suction θ < 0) has a stabilizing influence on the
flow in that the critical value of the Reynolds number
is increased. The stabilizing effect of “suction” is more
significant than the destabilizing effect of “blowing” at
the same absolute values of the mass-transfer parameter
(Figure 2).

For higher values of the Schmidt number Sc the influence
of the mass transfer on the hydrodynamic stability of the
boundary-layer flow becomes less significant. This result
is perhaps not surprising given the fact that the Schmidt
number Sc = ν/D plays a role analogous to the Prandtl
number in heat transfer, i.e. it is a measure of the relative
importance of the mass transfer and momentum transfer
in the flow. For large values of the Schmidt number the
relative thickness of the concentration and momentum
boundary layers is small and thus in this case diffusion is
important only within the thinner concentration bound-
ary layer at the wall.

Our results also demonstrate a significant difference when
compared to those of earlier work [3], which employed
an ad hoc assumption regarding the “smallness” of the
mass-transfer parameter θ in order to simply the re-
sulting eigenvalue problem for the complex wavespeed
c = cr + ici. In the case of low Schmidt numbers Sc
there is a significant variation in the critical Reynolds
numbers Rδ, although there is no significant change in
the critical wavenumber A or critical wave-speed c. In-
terestingly, the crude approximation employed in [3] can,
in some sense, be considered valid in the limit of large
Schmidt number. This behaviour can be traced to the
simple fact that the reciprocal of the Schmidt number
appears in the boundary condition for both the boundary
layer and the disturbance equations. Thus in the limit of
large Schmidt number the momentum and concentration
fields, for both the boundary layer and the disturbance,
decouple. In this case diffusion has no significant effect
upon the boundary-layer flow.

From a theoretical standpoint the present work has al-
lowed us to account for the effect of coupling between the
momentum and concentration fields in a self-consistent
manner. This in turn has allowed for the determination
of the correct values of the critical parameters (Reynolds
number, wavenumber and wave-speed) as well as the cor-
responding eigenfunctions. These results can now be
used to extend this analysis into the nonlinear regime
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