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Abstract

A simple model for cavitation bubble dynamics has been
developed using a combination of boundary element methods
and one-dimensional bubble dynamic equations. Each bubble
is assumed to be spherical and is modelled using a potential
source or sink. The strength of the source or sink is governed
by one-dimensional bubble dynamic equations so that the
velocity of the growing or decaying bubble at the interface
between the vapour and liquid is correctly represented. The
model has been implemented into computer program to study
the growth, collapse, and interaction of bubbles as they flow
through a venturi.  Interactions between a bubble starting as a
nucleus of gas, the surrounding liquid and the venturi
boundaries are described. Although this is a simple model,
surprisingly complex interactions can be studied with short
computational times and limited computer resources. Thus,
insights have been gained which otherwise would have been
extremely difficult to obtain. These are described in terms of
the bubble history, instantaneous velocity maps and
instantaneous stream function contours.

Introduction

Multi-fluid systems are important in many natural and
industrial processes, in particular in cavitation and boiling.
Despite recent developments in the visualisation and
measurement of fluid flows, in numerical simulations and in
the power of computers for modelling fluid flows, difficulties
remain when dealing with two-phase flow, because the
characteristics of interest are the result of complicated
interactions of the two phases.

In order to make progress in the numerical modelling of two
phase liquid flow in which evaporation and condensation
occur, two approaches have been adopted. The first involves
the study of the phenomena associated with a single, isolated
vapour bubble [1]. The accurate numerical prediction of two-
phase flow processes at the micro-scale, even without heat and
mass transfer, is a major problem in itself [2], so that the
inclusion of micro-physical phenomena in codes for the
calculation of macro-phenomena is beyond the means of most
researchers and designers.

The second approach is therefore usually based on the
assumption that a liquid-vapour mixture exists whose
properties can be approximated by correlations or theories
based on single bubble results. Once the properties have been
established the equations of motion are solved, with or
without the inclusion of heat and mass transfer [3]. The
problem is made more difficult by the fact that very often two-
phase flow problems are also unsteady. Numerical studies of
cavitation or boiling are therefore extremely expensive in
terms of computer resources and in particular computer time.
A number of authors have attempted to reduce the computing
time requirements, by assuming that the liquid and vapour are
inviscid (eg. [4]). They obtained results, which gave
reasonable agreement with experimental data, but, more
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ificantly, resulted in important insights into phenomena
o phase flow [6]. It appears therefore that it might be

ible to represent two-phase flow by modelling a
cient number of individual bubbles in an inviscid liquid.

chnique for such a model of cavitation in a venturi
ling a cavitating liquid is described.  The flow in the
uri is generated by a panel method. Whereas other
ers have used boundary elements to represent bubbles,
by limiting the number which could be studied
ltaneously, moving sources or sinks are used here.
th or decay of bubbles, assumed to remain spherical, i s

rmined from the Rayleigh-Plesset equation. The strength
ch of the sources can then be calculated by matching the

city of the vapour-liquid interface, as determined from
Rayleigh-Plesset equation, with the velocity generated at
same radius by a source or sink. This results in a simple
, which runs very fast, and is able to handle a large
ber of bubbles simultaneously.

ory
re 1 shows the dimensions and uniform velocity
ibution at the inlet of the two dimensional venturi. The
s of the venturi are sinusoidal and are modelled using
ed vortex boundary elements with a constant
mfunction boundary condition [5]. That is, on the walls
treamfunction, ψ, is given by:

  ψ w U h= ∞ ,   (1)

he upper wall, and  ψ w U h= − ∞ , for the lower wall. Here, h i s

half height of the inlet (see Figure 1) and U∞ is the
nitude of the uniform velocity at the inlet.
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e 1 : Definition sketch of venturi.

walls are divided into a number of boundary elements
 a single potential vortex positioned at the centre of each
ent, which are positioned in such away that there is a
er concentration at the throat of the venturi. At the centre
ach element the following conditions is satisfied:
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where ψvortex
ij
 is the streamfunction of the vortex i at the centre

element j, Γi is the vortex strength, ∆i length of the element i ,
n is the total number of vortices on the wall. In eq. (2)

ψ fs jj
U y= ∞ (4)

is the streamfunction of the freestream at the centre of the
boundary element j. The velocity field induced by a bubble
on the venturi flowfield is modelled using a two-dimensional
point source when the bubble is growing and a sink when the
bubble is collapsing. In eq. (2)
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is the streamfunction of bubble k, m is the total number of
bubbles and σ is the source strength or sink which i s
governed by the radius and growth rate of the bubble k. The
bubble, which is assumed to remain spherical, has radius R at
time t, and its growth rate, dR/dt, is determined by solving the
Rayleigh-Plesset equation [6] which with the assumption that
the temperature variations are very small, may be written as
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in which, PGo is the initial gas partial pressure in a bubble of
initial radius R0, Pv is the vapour pressure, P(t) is the pressure
at the bubble centre at time t, ρl is the liquid density, νl is the
liquid viscosity and S is the coefficient of surface tension.
This non-linear differential equation is solved using second
order finite differencing. P(t) is calculated from the unsteady
Bernoulli equation [5],

P t P V
to l( ) = − −

1
2

2ρ
∂φ
∂

,  (7)

in which, Po is the total pressure, V is the bubble velocity and
φ is the velocity potential.

Once R and dR/dt have been determined, σ can be calculated.
Since the radial velocity field is given by

v
rr =

σ
π2

               (8)

when r = R, and vr = dR/dt, the source or sink strength is σ =

2πR dR/dt.

A set of simultaneous equations is constructed and solved for
Γi. In matrix notation, this is written as

    
Γi ij w fs bubble
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problem is now fully defined, unfortunately no analytic
tion exists, so that a computer program has to be written
rder to obtain the necessary solutions.

erical Procedure
method of solving the whole time dependent flow-field i s

ly, to solve for the vortex strengths from which, together
 the stream function of each of the bubbles, the velocity
 and velocity potential can be calculated everywhere in
region of interest. The pressure at the position of the
le can then be determined and the Rayleigh-Plesset
tion solved using second order discretisation in time.
, R, dR/dt, and σ, can be evaluated. The new bubble
tions are calculated from the local velocity for the time
 δ t . This is repeated until all bubbles have exited from
venturi.

ults
udy of the motion and growth histories of a single bubble
two bubbles is presented here in order to illustrate the
bilities of the program. The program is capable of
ling multiple bubbles. In all cases bubbles were released
e entrance to the venturi. The bubbles were initially filled
 air and the liquid was water at 25

o
C.  The time-step in the

tions in this paper 50ns.

ubbles move downstream and the pressure decreases in
onvergent part of the venturi, they initially grow by the
nsion of air. When the pressure falls below the vapour

sure, due to evaporation, there is a significant increase in
growth rate. The maximum bubble size is reached
nstream of the venturi throat and the bubbles collapse
er downstream.

le Bubble
re 2 shows the history of the growth and motion as well
e flow when a bubble, with an initial radius R0, of 50µm,
leased on the centre line.  At t=7.5ms the bubble has

hed the throat, Figure 2(a), it continues to grow, Figure
, until it reaches its maximum size at t=8.5ms, Figure 2(c),
ll millisecond after its passage trough the throat. Now, the
pse begins and the bubble radius reduces, Figure 2(d).
lly at time t=9.5ms the bubble has become so small that i t
ot be seen in Figure 2(e).

14.758 m/s

0.0

Velocity

e 2 : Single bubble: R0 = 50µm (a) t = 7.5ms, (b) t = 8.0ms, (c) t =
s, (d) t = 9.0ms,and (e) t = 9.5ms. Left: bubble image, centre:
mlines, and the right: velocity map.

streamlines in the centre of Figure 2 illustrate that there i s
ke (Figures 2 (a-b)), caused by the dividing streamline
 the total flow rate out of the venturi greater than the flow
it. Because of the presence of the moving source there i s
iolation of continuity, but it might be unphysical. It may



be seen in Figure 2(b) that the source strength is increased
over that in Figure 2(a) and that at the point of maximum
growth, Figure 2(c) the source strength is zero. In Figure 2(d)
the sink indicates that the bubble is collapsing and the inflow
into the venturi is increased, which, in this case, is physically
meaningful. The liquid velocity distribution is shown on the
right hand side of Figure 2.  The effect of the presence of the
bubble is most clearly seen in Figure 2(d) in which the
velocity near the throat has been increased relative to those
shown in the other Figures in this group. Since the bubble i s
collapsing, liquid is required to fill the “void” created, so that
this is physically correct, as mentioned above. Similarly to
the moving source, a sink in a moving fluid results in a
dividing streamline, which encloses the source and stretches
to the entrance. Since the flow within this enclosing
streamline is absorbed by the source the inflow into the
venturi is increased, despite the fact that the velocity at the
entrance has been set to a constant value.

Figure 3 illustrates the effect of releasing a 50µm bubble at
different initial positions (y0) above the centreline. The
history of the motion is similar for all bubbles, however, the
larger the y0 the greater is Rmax. The wall forces the fluid
between it and the bubble to accelerate, thereby lowering the
pressure near it and enhancing their growth. Bubbles away
from the centreline are able to grow for a longer time, Figure
3(a), have a higher maximum interface velocity, Figure 3(b),
and their motion is more effected by the walls, Figure 3(c). A
bubble released on the centreline remains on that line,
whereas bubbles released closer to the walls move away from
their starting streamline (Figure 3(d)). A bubble released at
y0=0.0033m drifts towards the wall, whereas a bubble released
at y0=0.0067m moves towards the centre.
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e 3: Single bubble R0 = 50 µm: yo = 0.0, 0.0033 & 0.0067m (a)
 versus time, (b) dR/dt versus time, (c) Velocity of the bubble
s time, and (d) Path traced by the bubble.

 Horizontally Separated Bubbles

14.758 m/s

0.0

Velocity

e 4: Two Bubbles R0 = 50 µm spaced horizontally d = 0.005m (a) t
ms, (b) t = 8.0ms,  (c) t = 8.5ms, (d) t = 9.0ms, and (e) t = 9.5ms.
 bubble image; Right: velocity map.

effect of releasing two bubbles each with an initial radius
0µm, on the centreline, one 0.005m behind the other, i s
n in Figure 4. Figures 4(c) and Figure 4(e), show that the

nd bubble grows to a larger size than the first, Figure 5(a).
ever, a comparison of Figures 3(a) and 5(a) show that all

 bubbles are only slightly affected by the second.
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Figure 5: Two Bubbles: R0 = 50 µm, spaced horizontally d = 0.005m (a)
R/R0 versus time, (b) dR/dt versus time (c) Velocity of bubble versus
time, and (d) Velocity of bubble versus distance.

Unexpectedly, the second bubble, whose initial separation i s
200R0 from the first bubble, has an Rmax 1.5 times that the Rmax
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 isolated bubble, while a bubble whose initial separation
0R0 only grows to 1.25 the Rmax of an isolated bubble.
larly, the maximum bubble growth rate (Figure 5(b)) and
aximum bubble velocities (Figures 5(c and d) are greater

he second bubble whose initial separation is 200R0 than
n the separation is 100R0. This may be explained by the
that, if the bubbles are close together, the fluid between
two bubbles needs to be displaced while the bubbles
, so that the forces required are such that the pressure
 and inhibits the growth of both bubbles. The pressure
 less when the bubbles are further apart and the effect i s
igible at d=300R0.

rficially all the bubble velocity histories of the second
le look similar (Figure 5 (c)), with the maximum bubble

city occurring at approximately the same time for all
 bubbles studied. However, the maximum bubble

city occurs at very different positions as may be seen in
re 5 (d).

clusions
eory for the motion, growth and decay of vapour bubbles
n inviscid liquid flowing in a venturi was developed in
paper. The liquid flow was modelled by the boundary
ent method and the bubble, assumed to remain spherical,

a moving source whose strength was determined by
hing the solution of the Rayleigh-Plesset equation at the
le interface. Single bubble and two bubbles arranged in
us positions, were studied. It has been demonstrated that

able physical insights were be easily obtained for this
plex problem from this very simple model, which takes
 a few minutes on a desk top computer.

nowledgments
 research was supported by the Australian Research
ncil.

rences
Plesset, M.S., & Prosperitti A. (1977), ‘Bubble Dynamics
and Cavitation’, Annual Review of Fluid Mechanics, 9,
145-185
Chen, L., Craimella, S., Reizes, J.A., and Leonardi, E.
(1999), ‘Development of a Bubble Rising in a Viscous
Liquid’, Journal of Fluid Mechanics, 387, 61-69
Athavale, M.M., Li, H.Y., and Singhal, A.K. (2000),
‘Application of the Full Cavitation Model to Pumps and
Induces’, 8th International. Symposium on Transport
Phenomena and Dynamics of Rotating Machinery
(ISROMAC-8), Honolulu, HIRosenhead, L. (editor)
Laminar Boundary Layers Oxford, Clarendon Press,
1963.
Chahine, G.L. (1995), ‘Bubble Interactions with
Vortices’, Fluid Vortices, Chapter 18, S. Green (Ed.),
Kluwer Academic.
Katz, J., and Plotkin, A., (1991) Low-speed
Aerodynamics: From Wing Theory to Panel Methods.
McGraw-Hill.
Brennen, C.E., (1990), Bubble Dynamics and Cavitation.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	Also by J.A. Reizes
	------------------------------

