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Abstract 

A theoretical study of steady transonic flows about axisymmetric 
and 3-D elongate bodies has been carried out within the 
framework of non-linear small disturbance theory using the 
transonic equivalence rule. A numerical method for calculating 
transonic flow about bodies of revolution was used by 
formulating the Alterating Direction Method together with 
monotone Engquist-Osher’s algorithm for the axisymmetric case. 
This approach has a good reputation in solving similar two-
dimensional problems.  
A new effective algorithm to determine wave drag of bodies of 
revolution in inviscid transonic flow has been developed. As a 
result, the wave drag value is obtained by velocity jump 
integration along shocks closing local supersonic regions. This 
method is more exact then the ordinary method of integration of 
pressure along the body surface. 
 
The efficiency of a numerical algorithm is demonstrated by 
calculating transonic flow over thin bodies of revolution. The 
results concerning calculations of the wave drag of elongate 3-D 
configurations of hypersonic aircraft in the framework of 
transonic equivalence rule are also given; these results were 
derived earlier by A.S. Fonarev and M.A. Naida, whilst working 
at the Central Aero-hydrodynamic Institute  (TsAGI), Moscow, 
Russia. 
 
Introduction 
When transonic flows about thin wings with moderate aspect 
ratio and their combinations with fuselage, the maximum cross-
sections size of which is small in comparison with its length, are 
considered within the framework of small disturbance theory, the 
significant problem simplification can be achieved through the 
use of asymptotic matching expansions technique [1]. As it was 
shown in [1] there are two regions, flows in which are governed 
by different boundary-value problems. In the inner (adjacent to 
body) region the main term of the disturbed potential satisfies 
Laplace equation in perpendicular to body planes. In the outer 
region at large distance from the body the solution has 
axisymmetric pattern and its main term coincides with the 
solution for the equivalent body of revolution. 
Thus, the solution for 3-D flow problem can be obtained by 
simultaneous solving two boundary-value problems with 
unknown functions depending on two spatial variables. As a 
result, this approach is employed basically to determine pressure 
distribution over the surface of the vehicles with small lift [2].  
In the numerical study of problems concerning flow about 
bodies, the necessary aerodynamic coefficients are usually 
calculated by integrating the distribution of pressure over the 
surface of the body. However, it should be noted that the 
accuracy of this approach might be affected by errors made in the 
numerical calculation – particularly in the nose and tail regions. 
Calculations have shown [3] that these errors are negligible in the 
determination of the lift and moment coefficients and that the 
traditional method is acceptable for both steady and unsteady 
problems.  
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situation is different in regard to determination of the wave 
. It is known [3,4] that integration errors – connected both 
 errors in the numerical analysis and with violations of the 
lates of the transonic theory of small perturbations at 
idual points on the body – may produce errors in the final 
t obtained by the traditional approach. These errors may 
 lead to negative values for the drag coefficient. Thus, here 
se another method to determine the wave drag of bodies – a 
od that is less sensitive to integration errors. The authors of 
ere the first to propose replacing integration of pressure 

 the surface of the body by another procedure that does not 
lve integration at locations where the postulates of the 
onic theory may be violated. The alternative method has 
been used extensively in studies devoted to finding ways to 
mine steady and unsteady wave drag in transonic flows. 
xample, it was proposed in [3,4] that wave drag in a steady 

 past thin airfoils be found by integrating along shock waves 
loping supersonic regions. This method is less sensitive to 
erical integration errors connected with specific features of 
rbation theory.  
milar approach in determining the steady-state wave drag 
used in [5], where it was assumed that the contour integral of 
ongitudinal component of momentum along the shocks is 
l to the contour integral over the surface of the body. 
author of [6] and [7] generalised the method to the case of 
ady transonic flow and obtained the time dependence of 
ynamic characteristics of wing profiles for different 

ient – such as the interactions of the profile with a wind 
r, a moving shock wave, etc. 
value of drag calculated in the above-cited works for 

rent airfoils agree well with the experimental data, which 
s the effectiveness and reliability of the method. It is 

esting to attempt extend the method to the case of flow about 
mmetric bodies. There are certain features specific to this 
lem [8,9]. 

tatement of the problem and numerical method 
problem of transonic flow past a prolate solid of revolution 
be examined within the framework of the non-linear 
onic theory of small perturbations. Here, we obtain steady-
 solution by proceeding on the basis of the equation for 
ady conditions. This unsteady transonic equation can be 
en as follows in dimensionless form, as it has been done in 

                          (1.1)  
e  
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s the potential of velocity perturbations, the x and r axes of a 
drical system of coordinates with origin at the middle of the 
 are parallel and perpendicular to the unperturbed flow, 
ctively, ∞M is the Mach number of the incident flow, and 

 the adiabatic index.  
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All the quantities in (1.1) are dimensionless. The perturbation 
potential is relative to the velocity of the incoming flow ∞U and 

the length of the body L, the independent variables x and r are 
relative to L and the time t is relative to ∞UL . 

The initial and boundary-value problem is obtained by adding 
initial and boundary conditions to Eq. (1.1). The initial conditions 
are obtained by assigning the potential and its derivative with 
respect to time. The boundary conditions are more complicated. 
Since (1.1) is non-linear and is mixed elliptic-hyperbolic with 
respect to the space variables, depending on whether the incident 
flow is subsonic or supersonic, the conditions on the outer 
boundaries of the calculation domain must be of two forms. 
However, as we are studying unsteady flow, it could happen that 
the incident flow changes from subsonic to supersonic and vice 
versa. Moreover, with a finite calculation domain, the usual 
subsonic condition expressing decay of the perturbation potential 
far from the body means that perturbations, which have reached 
the boundary, are reflected. Since transonic flows are sensitive to 
small changes in the flow parameters, we must eliminate any 
possible influence of the boundary conditions on the flow field 
near the body in the form of perturbations reflected from external 
boundaries. We do this by using special non-reflecting boundary 
conditions, which are appropriate for both the subsonic and 
supersonic domains. Conditions of this kind were obtained for 
the plane case in [10] and for axisymmetric case in [11] by an 
analysis of the asymptotic behaviour of a relation that was 
satisfied on the characteristic surface of the original equation. 
We use here the results of [11]: 
         

          

 
   
 
 
The formulation of the condition on the lower boundary requires 
special consideration. Unlike the plane case, Eq. (1.1) has a 
singularity at 0=r  and the impermeability condition on the 
body cannot be taken down to the axis of symmetry. Thus, the 
boundary condition is determined from the solution of Eq. (1.1) 
as 0→r  allowing for the impermeability condition 

)2/()(lim ''

0
πϕ xxr

r
SRRr ==

→
,                                (1.3) 

where )(xR  is the coordinate of the body and )(xS  is its cross-
sectional area. This relation will be used as a boundary condition 

on a cylindrical surface with small cross-sectional radius *r , 

which we will also take as the lower boundary of the outer 
domain: 

0=rϕ ,     5.0>x ,   )2/(' πϕ xr Sr = ,     5.0≤x ,     *rr =  

The numerical calculations of transonic flows for the outer 
domain were derived by using the Alternating Direction Method, 
developed in [8].  
 
2. Method of calculating wave drag 
We use the integral momentum theorem to determine the wave 
drag of bodies. Certain transformations must be performed before 
the integral theorem of moment can be used to calculate the wave 
drag of a solid of revolution by integrating over a shock wave.     
With the assumption that the perturbations are small, we write the 
expression for the pressure coefficient in the form 
              
 
The transverse component of velocity on the body is known from 
the boundary conditions. To determine the longitudinal 
component, again integrating Eq. (1.3): 
          

Here
the 
comp

 
Sinc
field
distr

the 

exter

thus,
veloc
       
 
 
Now
the i
 
     
 
We t
the f
 

 
The 

  
Sinc
the f
term

l2R
In th
the c
be ze
Thus
(2.2)
To e
(1.1)
vorti
       
       
Mult
by 
diver
       
 
 
Taki
theo
a cur
that 

 
At M

[4] t
as th
Thus
 
 
 
wher
seve
quan
shoc

−∞→x,0)( 2 =++− ∞∞∞ tx MCMMC ϕϕ

,0( 2 =+−− ∞∞∞ tx MCMMC ϕϕ ∞→x

,02 =++ ∞∞ tr MCMC ϕϕ ∞→r

22 vucp −−=

)(ln
2

'

xgr
Sx +=
π

ϕ

∫ r
s

324
, )(xg  is a function determined by joining the result with 
solution of the external problem. For the longitudinal 
onent of velocity we obtain 

         (2.1) 

e the boundary-value problem has been solved, i.e. since the 
 of perturbed velocity is known, then we also know the 
ibution of the longitudinal component *u  on the surface of 

imaginary cylinder at *rr = . Combining the internal and 

nal solutions at *rr = , we find the value of 'g  in (2.1) and, 

 the sought distribution of the longitudinal component of 
ity on the surface of the body: 

                    

 we can determine the wave-drag coefficient of the body as 
ntegral of pressure on the body: 

ake condition (1.3) into account and write this expression in 
orm of the sum of two integrals: 

   (2.2) 

second term can be integrated: 
 

(2.3) 

e only thin and (as a rule) closed bodies are examined within 
ramework of the transonic theory of small perturbations, the 
s of (2.3) vanish. Specifically, this occurs because the limit 

0n →R  as 0→R  in the nose and tail portion of the body. 
e case of a body with a nontrivial radius in the bottom part, 
omplement of resistance – the term with 5.0=x  -, may not 
ro. In this case, it can be calculated in accordance with (2.3). 
, the first term remains unknown in the expression for drag 
 and must be found. 
xamine a system consisting of the stationary analogy of Eq. 
 and the equation expressing the condition for the absence of 
city in the flow 
 

iplying the first equation of the system by u  and the second 
rv  and adding the result, we obtain a relation having a 
gent form: 

 

ng the double integral of this expression over the entire 
retical flow region and using Green’s formula to reduce it to 
vilinear integral over a closed contour as in figure 1 we find 

        (2.4) 

,1≤∞  the asymptote of the long-range flow field is such 

hat the integrals over the external boundaries approach zero 
e boundaries of the theoretical region approach infinity.  
, we can write (3.4) in the form  

e the index s  denotes integration along a shock wave or 
ral shock waves. The brackets denote that the enclosed 
tity undergoes a discontinuity in the transition through the 
k wave. 
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      Figure 1 
The resulting expression means that, to within the multiplier ,4π  
the first term in Eq. (2.2) can be expressed in terms of integrals 
over a shock wave. Here, the integrands differ from the 
corresponding expressions for the plane case [4] only in the 
presence of independent coordinate r, which is continuous in the 
transition through the shock. Omitting the intermediate 
calculations (where are analogous to the calculations performed 
in [4]), we present the final result in the form 
  
 
 
so that  

.                                         (2.5) 
 
In contrast to the first integral in Eq. (2.2) integral (2.5) is always 
positive, since the integrand is positive due to the physical nature 
of the problem. 
 
3. Results of calculations 
On the base of the implicit numerical method of Variable 
Directions a computer program was developed. This program 
calculates both stationary and nonstationary transonic flows and 
aerodynamic characteristics of bodies different forms. Figure 2 
compares the distribution of pc  over body  

),25.0(2)( 2xxR −= τ     ,5.ox ≤    167.0=τ ,           (3.1) 

obtained by solving the steady problem with 98.0=∞M  and 

experimental results (separate points) of [12]. In [12] and also in 
[13] a different approximation schemes for the steady analogue 
of Eq. (1.1) were used; the results are not shown because they are 
in good correlation with the curve.   The efficiency of the method 
is demonstrated by the good agreement between the theoretical 
and experimental curves. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Experimental and theoretical data, arc body, Mach 
number 0.98 

 
We will now consider the results for the same body but different 
Mach numbers of transonic flow as well as some other body.   
Pressure distributions over the arc-body of revolution (3.1) for 
the transonic Mach Numbers 0.92 to 0.99 are shown at the figure 
3. It can be seen that the shock moves along the body surface 
with the change of Mach number, when approaching Mach 
Number 1. The horizontal lines show the critical values of 
pressure when the local velocity of the flow is sonic. 
Figure 4 demonstrates pressure distribution over the same body 
but the velocities of transonic flow are slightly supersonic, i.e. 
Mach number equals 1.01 to 1.05. There are two shocks at the 
leading and the rear edge of the body of revolution.  
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e are horizontal lines suggested the levels of sonic pressure 
personic flow. The flow on the surface of the body has 

rsonic velocity, excluding the vicinity of leading and rear 
ts. The horizontal lines show the levels of critical pressure 

hen local Mach number equals 1. 

Figure 3 Pressure distribution on arc body of revolution, 
,167.0=τ  M=0.92 – 0.99 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Pressure distribution on arc body of revolution, 
,167.0=τ M=1.01 – 1.05 

Figure 5 Wave drag versus Mach Number, arc body of      
revolution 

t is mentioned above there are some difficulties to obtain 
ral characteristics – wave drag of the body. The usual 
od of using pressure integration over the body can have 
 errors. It can be seen at the Figure 5. There are a zone of 
h Numbers with slightly negative values of wave drag, when 
rag is calculated by integrating pressure over the body. The 
epancy can be especially big if the bodies are non-
etric, as it was shown in [8]. 

g the formula (2.5) to calculate wave drag of bodies in 
tly supersonic flow demands special analysis, because the 
 supersonic domain on the body is infinite. The calculations 
 the quality true character of the curve decreasing in 

rsonic flow as 11 2 −∞M  in correspondence with the linear 

rsonic flow theory.  
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In conclusion, aerodynamic characteristics of complicated 3-D 
elongate body representing modern hypersonic vehicle can be 
obtained if the transonic equivalence rule is used. It is shown that 
the results obtained in [8], this method was used together with the 
transonic equivalence rule to calculate the wave drag of a 
schematised hypersonic aircraft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Wave drag of hypersonic aircraft versus Mach Number 
 
Figure 6 shows the schematised aircraft and the corresponding 
equivalent solid of revolution. This Figure 6 shows the 
dependence of wave drag on the Mach number of the aircraft and 
the equivalent body of revolution. The dashed experimental curve 
was obtained at TsAGI (Central Aerohydrodynamics Institute, 
Moscow) [8] and corresponds to the wave drag of the aircraft 
model calculated as the difference between the total drag for the 
specified Mach number and the drag at 7.0=∞M for subcritical 

flow. The dashed curve corresponds to the drag calculated by the 
method of integration over the body. It is apparent that the values 
of wave drag calculated by the method of integration over a 
shock wave (solid curve) are considerably closer to the 
experimental data than the values obtained by integrating over 
the body. It should be pointed out that the aircraft model being 
discussed is fairly complex, including an engine nacelle and 
corresponding to a thick equivalent body of revolution (thickness 
14%). This is probably the source of error in the theoretical 
curve. In particular, the complexity of the model is probably 
responsible for the location of the drag maximum in the 
supersonic region. 
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