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Abstract 
An experimental and numerical investigation of the fluid 
mechanics within an enclosure containing a plane, vertically 
distributed source of buoyancy is described.  Two separate 
situations are considered in which the enclosure is either sealed 
or naturally ventilated. In the sealed enclosure the stratification 
develops in qualitatively the same way as for a ‘filling’ box 
containing a single, point source of buoyancy on the floor.  In the 
case of the ventilated box it is found that for some values of non-
dimensional vent area a complex stratification develops with a 
number of distinct layers fed by horizontal intrusions from the 
vertical source.  We present results from saline solution 
experiments and compare them with a theoretical model 
developed using plume theory.  Numerical solutions to the 
theoretical equations which provide detailed information on the 
transient development of the density profile within the enclosure 
are also presented. 
 
Introduction 
The "filling box" is a fluid mechanics problem that has 
applications in many areas of geophysical fluid mechanics and 
engineering.  The most fundamental configuration is the situation 
with a point source of buoyancy located on the floor of a sealed 
enclosure.  The buoyancy source gives rise to an axi-symmetric, 
turbulent plume, which lays down a stably stratified buoyant 
layer of fluid at the top of the enclosure.  The depth of this layer 
increases with time, as does its buoyancy at any given height.  In 
this paper we are concerned with a filling box with a buoyancy 
source distributed over a vertical surface within the enclosure (as 
shown schematically in figure 1). 
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Figure 1.  Schematic of: a) development of a plume from a plane, vertical, 
distributed source of buoyancy on one wall of a sealed box of height H 
showing position of the first density front at times t1 and t2   (t2 > t1) ; 
b) corresponding density profiles in the plume and the ambient fluid (not 
to scale).  
 
The first comprehensive analysis of the filling box problem with 
an axi-symmetric plume was carried out by Baines and Turner 
[1], hereinafter referred to as B&T, who predicted the depth of 
the buoyant layer as a function of time and the ambient 
stratification in the asymptotic limit  (as ).  Worster and 
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pert [13], hereinafter referred to as W&H, subsequently 
ed B&T's analysis of this situation to provide a method of 
icting the stratification in the buoyant layer at any time.  To 
his they invoked an approximation whereby the buoyancy 
in the plume rising through the buoyant layer varied linearly 
 height above the lower limit, or "first front", of the layer. 
eles [6] carried out a numerical analysis of the same 

tion, which W&H used to validate their approximate 
tical solution. 

filling box problem is of considerable interest to building 
ces and air conditioning designers and a logical extension of 
ork of B&T was made by Linden, Lane-Serff & Smeed [8] 

 investigated the behaviour of naturally ventilated filling 
s with various configurations of opening to the external 
ient.   Other researchers who have also studied the ventilated 

include Sandberg and Lindström [10,11] who were 
erned with forced ventilation of enclosures containing point 
vertical line sources of buoyancy. 

motivation for the present research comes, in part, from the 
 to develop a model of the air flows and thermal 
ification that arise in enclosures such as buildings that have 
ibuted heat sources on one or more walls.  Solar gains to the 
s of large atria, for example, can lead to intense thermal 
ification of tens of degrees Celsius [4].  This can 
ficantly affect thermal comfort conditions within the atria 
increases the air conditioning heat loads of adjacent rooms. 

ral convection boundary layers are generated on heated 
cal surfaces in such enclosures and surprisingly little 
rch has been reported where the thermal boundary condition 
e of uniform heat flux and high Rayleigh number [12].  
n that the effect of molecular viscosity is relatively small in 
 turbulent boundary layers, they may be treated as plumes 

 buoyancy added uniformly with height.  We have used this 
mption and the approach of B&T and W&H to determine the 
acteristics of the transient development of stratification in 
illing box.   

e plume in a uniform environment 
plane, vertically distributed source of buoyancy shown in 
e 1 is taken to emit a buoyancy flux, F0, per unit area with 
 momentum and volume fluxes at the surface.  The source 
orizontal width, L, and we represent the plume (or boundary 
) as having "top-hat" vertical velocity and density profiles 
computational convenience.  The plume properties are 
cal velocity, w, and buoyancy, ∆ = g(ρe - ρ)/ρ1, where ρ(z)  
e density of the plume, ρe(z)  is the density of the ambient 
 and ρ1 is a reference density.  The equations governing the 
lopment of the plume through an ambient of arbitrary 
ification are as follows (full details given in [3]): 

w
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where b is the width of the plume and ∆e = g(ρe - ρ1)/ρ1 is the 
buoyancy of the ambient fluid. For convenience we use the 
following nomenclature for the volume flux, Q=(bw), 
momentum flux, M = (bw2), and buoyancy flux, F = (bw∆), per 
unit horizontal length of the plume, and α denotes the 
entrainment coefficient.  For a plume in a uniform environment a 
similarity solution to (1) may be found such that: 
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Plane plume in a linearly stratified environment 
When a plane plume develops in a linearly stratified environment 
equation (1) may be conveniently rewritten using the following 
non-dimensional variables: 
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where N is the buoyancy frequency of the ambient fluid.  These 
equations have been solved numerically and the results are 

presented in figure 2.    
 
Figure 2.  Variation in the non-dimensional volume flux, q, buoyancy 
flux, f, and momentum flux, m, of a plume due to a plane, vertically 
distributed source of buoyancy in a linearly and stably stratified 
environment of buoyancy frequency N. 
 
It can be seen that the local buoyancy flux, f, is predicted to 
reach a maximum at ζ ~ 1.4 and then zero at ζ = 2.7.  Beyond 
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point the plume is negatively buoyant with respect to the 
ient and momentum decreases.  In practice the plume will 
fore overshoot the neutrally-buoyant height and eventually 

back to form a horizontal intrusion into the ambient in the 
n 2.7 < ζ < 3.6 (cf. equivalent analysis by Morton, Taylor 

Turner [9]).  A new plume will therefore develop adjacent to 
distributed buoyancy source immediately above the 
ontal intrusion. 

e plume in a sealed filling box 
odelling the situation shown in figure 1 we have adopted a 
lar approach to that of B&T and W&H.  In addition to the 
e equations (1) the development of the ambient stratification 

in the box (neglecting molecular diffusion) is: 

zA
LQ e

∂
∂∆







= , (5) 

e A is the horizontal cross-sectional area of the box.  The 
rning differential equations are then arranged in their most 
enient form by defining the following variables 
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 governing equations for the filling box are then: 
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position, ζ0, and density, δ0, of the first front may then be 
mined using (2) so that:  
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the time scale associated with the flow is t* ~ AH-1/3F0
-1/3/L, 

e τ = t/t*.  The density within the buoyant layer that 
lops at the top of a box containing a point source of 
ancy was found analytically by W&H by making a linear 
oximation to the buoyancy flux in the rising plume.  This 
 of approximation is not possible in our case and we have 
fore carried out a numerical solution of the governing 
tions (7) and (8) adopting a procedure similar to that 
ribed by Germeles [6].  Results of this numerical procedure 
iven in figures 3 and 4. 

 ventilated filling box 
n openings of respective areas at and ab are provided in the 
and bottom of the box that connect to an external 

ronment of constant density then a ventilation flow, Qvent, 
es through these vents such that: 
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where H is the total height of the enclosure. The “effective vent 
area”, A*, is defined as [5]: 
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where c is the pressure loss coefficient associated with the inflow 
through a sharp-edged opening and cd is a discharge coefficient 
that accounts for the vena contracta arising at the downstream 
side of the sharp-edged upper vents. In terms of the 
dimensionless variables (6) the ventilation flow rate (per unit 
length of source) is therefore: 
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Figure3. Development of the non-dimensional density field in a filling 
box containing a vertical, plane distributed source of buoyancy with 
increasing time, τ. 
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Figure 4. Non-dimensional buoyancy flux, f, of a plane plume relative to 
the local ambient fluid in a filling box containing a vertical, plane 
distributed source of buoyancy. 
 
 
In a ventilated box it is possible for the stratification at a given 
height to be sufficiently intense that the plume becomes neutrally 
buoyant and forms a horizontal intrusion as shown schematically 
in figure 5.  It is postulated that a new plume will then start 
immediately above this point. 
 
Numerical predictions of the stratification in a ventilated box 
with a non-dimensional vent area of A*/(αHL)= 0.042 are shown 
in figure 6 by way of example.   The buoyant layer initially 
grows in depth in a manner similar to that for the sealed box.  
However, the first front does not continue to descend indefinitely 
due to the upward ventilation flow of the ambient fluid through 
the box.  After a long period, τ > 40, the plume detrains a total of 
three times over the height of the box in this particular case. 
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e 5.  Schematic of a plume  from a distributed source of buoyancy 
e wall of a ventilated box.  The plume rises to a point where it is 

ally buoyant with respect to the local ambient and subsequently 
s a horizontal intrusion. 
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e 6.  Transient development of the ambient stratification within a 
g box containing a plane, vertically distributed source of buoyancy 
a non-dimensional vent area of A*/(αHL)= 0.042.  

eriments 
riments to validate some of the results above were 
rtaken using an enclosure of internal dimensions 25 x 25 x 
.  Water was the working fluid and the vertically distributed 

ce of buoyancy was implemented by replacing one of the 
cal acrylic walls of the enclosure with a porous membrane 
gh which salt solution was injected (see figure 7).  The 
riments were visualised by means of a shadowgraph and 
rded on videotape via a CCD camera.  
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e 7.   Annotated digitised image showing a typical ventilated 
iment at t = 30 minutes.  Dye has been added to the source salt 

ion to aid in the interpretation of the density field.  The porous wall 
e right provides a vertically distributed plane source of buoyancy. 
rimental conditions were A* = 0.56cm2 , F0 = 1.5 cm2/s3. 

ajor assumption in our model is that the turbulent, high 
eigh number natural convection boundary layer may be 
elled as a plume and that the entrainment assumption is valid 



for this flow.  This has been experimentally validated by 
comparing z0(t) with that predicted by (10).   The first front 
height was determined by processing the video images with the 
DigImage software package [2].  Results from six experiments 
are shown in figure 8.   
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Figure 8. Position of the first front as a function of non-dimensional time 
in a "sealed" enclosure containing a plane, vertically distributed source of 
buoyancy.  The entrainment constant was determined from a least-squares 
best fit to the theory given by (10). 
 
It can be seen that the entrainment assumption is valid for non-
dimensional time 0 < τ < 2.5.  Beyond this time the entrainment 
assumption did not appear to hold, most probably because the 
boundary layer on the upper part of the source (for small ζ) was 
laminar and thus entrainment in this region was less than that in 
an idealised turbulent plume.   As a result, when the first front 
reached the laminar portion of the boundary layer so its ascent 
rate decreased relative to that predicted by (10). The mean of the 
entrainment constants determined from the six experiments 
shown in figure 8 was α = 0.020. 
 
The transient stratification profile in a ventilated filling box was 
determined using a conductivity probe similar to that described 
by Leppinen [7].  Results from an experiment with a non-
dimensional vent area of A*/αHL = 0.094 are presented in figure 
9 and compared with the results from the numerical solution of  
(7), (8) and (13).   
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Figure 9.  Ambient fluid non-dimensional density, δ, as a function of non-
dimensional height, ζ, at two values of non-dimensional time, τ, for a 
non-dimensional area of A*/αHL = 0.094.  Symbols represent 
experimental data and solid lines are numerical results. 
 
Although  the numerical results do not replicate exactly  the 
experimental measurements, qualitative agreement is evident. 
Moreover, the plume detrainment process was observed 
experimentally at a number of locations for particular non-
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nsional vent areas.  This detrainment was usually 
mpanied by the appearance of bright horizontal lines on the 
owgraph indicating regions of intense stratification (figure 

mber of significant difficulties are faced when attempting to 
sent the idealised flows of figures 1 and 5 at the laboratory 
.  In particular, any natural convection boundary layer 

ng from a real vertical distributed source will be laminar for 
l ζ.  

clusions 
 numerical and experimental study of the flows arising from 
rtically distributed source of buoyancy has led to the 
wing outcomes.  Analytical models have been developed for 
iction of the volumetric flow rate, momentum, velocity and 
ancy of the plume in uniform and linearly stratified 

ronments.  An analytical model of the stratification that 
lops in a sealed and a ventilated box as a result of a 
cally distributed buoyancy input on one wall has been 
loped and solved numerically.  The assumption that the 
lent natural convection boundary layer on a wall of uniform 
ancy flux obeys the entrainment assumption has been 
rimentally validated and the entrainment constant for this 
 was found to be of order 0.02.  The flow field in the 
ilated case is found to be complex and involves detrainment 
he plume from the vertical source at particular non-
nsional vent areas. 
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