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Abstract 
The fluid-structure interactions between an oscillating cylinder 
and the natural instability of the wake have been studied by 
simultaneously measuring the structure of the near wake and the 
forces on the cylinder. In this paper we examine the results of 
externally forced sinusoidal oscillations and compare them with 
the vortex induced oscillations of an elastically mounted 
cylinder. While wake structure and the variation of the vortex lift 
phase show some remarkable similarities, the results of these, 
and previous investigations, show that the forced oscillations can 
result in negative energy transfer for purely sinusoidal motion at 
frequencies and amplitudes at which free vibrations are known to 
occur.   

Introduction and Preliminary Discussion 
Vortex induced vibration of natural and engineering structures is 
of significant practical interest as it can result in structural 
failure, an infamous example being the Tacoma Narrows bridge.  
Vortex induced vibrations typically occur when fo, the natural 
frequency of the wake generated by flow over the stationary 
body, approaches the natural structural frequency of the body 
fstruc. The relationship between the vortex induced motion and the 
wake of the oscillating body is complicated by the fact that these 
parameters are intrinsically inter-dependent. A common method 
of simplifying this problem is to control or force the oscillation 
of the body and examine the response of the wake to a defined 
motion. The transverse motion of a freely oscillating body is 
typically very sinusoidal and when the oscillations are forced, 
this motion is replicated by a purely sinusoidal motion transverse 
to the free-stream. 
As the frequency of the forced oscillations, fe passes through fo 
significant changes are observed in both the forces on the 
cylinder and the structure of the wake. A jump in the phase and 
amplitude of lift force around fe/fo ≈ 1 was first identified by 
Bishop & Hassan [1], and subsequently observed by a number of 
investigators, including [4, 12, 13, 11, 2]. A change in the mode 
of vortex shedding from 2P to 2S, [15] and a switch in the sign of 
the phase-referenced initially formed vortex, [9, 6] was also 
observed at fe/fo ≈ 1. A link between the jump in the lift force and 
the change in the phase and mode of vortex shedding was 
established experimentally by Carberry et al [2], who describe 
these events as a transition between the low- and high frequency 
wake states. 
The analogous case of an elastically mounted cylinder which is 
constrained to oscillate transversely has also received 
considerable attention. The response of the elastically mounted 
cylinder depends primarily on the mass, damping and natural 
response frequency of the cylindrical structure as well as the 
reduced velocity, U* of the flow past the cylinder. The early 
investigation of Feng [3] showed that as U* varied the cylinder 
displayed two response branches, subsequently defined as the 
initial and lower branches. The transition between the initial and 
lower branches was characterised by a jump in the phase of the 
lift force and occurred at fe/fo ≈ 1. Further investigations [8, 5] 
found that at very low values of mass damping, m*ζ there is an 
additional upper response branch. Generally the amplitude 
response is plotted against U*, where U* = U/(fstruc D). However, 
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ower values of m*ζ when the response is plotted against 
* or (U*/f*)Sto, there is a general collapse of the data, [8, 5], 
e f* = fe/fstruc, Sto = fo D/U and therefore (U*/f*)Sto = fo/fe. 
, the collapse occurs when the free-stream velocity is 
alised by fe, the frequency at which the system responds to 
ake instability rather than fstruc, the resonance frequency of 

tructure. 
total fluid force, Ftotal on a moving body can be broken into 
components: the force due to the vorticity field Fvortex and Ffi 
orce due to the inertia of the fluid displaced by the motion of 
ody, [16, 5]. 
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e u is the velocity of the body, Vc is a distant external 
dary containing all the shed vorticity and Vb is the volume 
ding the solid body, in our case the cylinder. For transverse 
lations the cylinder’s acceleration is parallel to the lift force 
has no component in the direction of the drag. Thus CL fi is 
valent to Ffi to and is in-phase with the displacement of the 
der. The vectorial relationship between the total lift force 
 and the vortex lift force CL vortex(t) is shown in Figure 1, 
e CL vortex(t), rather than CL(t) represents the lift force due to 
orticity field.  Therefore, as demonstrated by Govardhan & 

iamson [5], the vortex force should be used to provide 
ht into the changes in the structure of the wake to the forces 
rienced by the body. 
forced sinusoidal motion of the cylinder is given by  
                            y(t) = A sin(2πfe t) (2) 
e A is the amplitude of oscillation. When the cylinder’s 
 is locked-on to the oscillations the approximately 
oidal total lift force can be represented by: 
                     CL(t) ≈ CL sin(2πfet + φlift) (3) 
e CL is the amplitude of the total lift force coefficient and 

is the phase of the total lift with respect to the cylinder’s 
acement y(t). Similarly, the vortex lift force can be 
essed as a sinusoidal function with phase φlift vortex and 
litude CL vortex: 
           CL vortex(t) ≈ CL vortex sin(2πfet + φlift vortex) (4) 
transverse oscillations, the energy of the cylinder represents 
nergy transfer from the fluid to the cylinder and is simply 
ntegrated product of the total lift force and the velocity of 
ylinder. The energy transfer varies with the component of 
lift force which is out-of-phase with the cylinder’s 
acement, while the in-phase component of the lift force has 
ffect on the energy transfer. Figure 1 demonstrates an 
esting link between the vortex and total lift forces: their out-
ase components are equal and the energy transfer can be 

essed in terms of either the total or vortex forces. If the total 
vortex lift forces are accurately represented by equations (3) 
(4) then the normalised energy transfer is given by 
    CE ≈ π D

A CL sin(φlift) ≈ π D
A CL vortex sin(φlift vortex) (5) 

sustained motion of a free oscillating system requires a net 
ive energy transfer and will only occur when 0o<φlift<180o, 
uivalently when 0o<φlift vortex<180o. The forced motion of a 
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body is not subject to this constraint and all values of φlift and 
φlift vortex are theoretically possible. 
One of the important questions arising from the investigations of 
forced and freely oscillating cylinders is whether the results from 
the forced oscillations be used to predict and interpret the 
oscillations of a freely vibrating system. A number of 
investigations, [13, 7] have considered this problem, however 
they were not able to predict the response of a freely oscillating 
cylinder over a wide range of parameters, and to a large extent 
this question remains unresolved. In this paper we present forces 
and vorticity fields for the forced oscillation of a cylinder and 
compare these results with those of an elastically mounted 
cylinder, [5]. The similarities and differences between these two 
sets of results will be discussed, in particular the ability of the 
forced oscillations to predict, or provide insight into, the freely 
oscillating case will be considered. 

Experimental Method 
The experiments were performed in a free-surface water channel 
at Lehigh University. The cylinder was mounted horizontally and 
oscillated transverse to the free-stream, such that its vertical 
motion was given by equation (2). During each experiment the 
amplitude of oscillation was held constant, while the frequency 
varied between 0.74 < fe/fo < 1.27. Experiments were conducted 
at a number of amplitudes including A/D = 0.25, 0.4, 0.5 & 0.6, 
where D is the diameter of the cylinder. Over the range of A/D 
and fe/fo studied the wake was locked-on to the cylinder’s 
oscillations. Two different cylinders, 25.4 mm and 50.8 mm in 
diameter, were used, giving aspect ratios of 12.5 and 7.6 
respectively. The larger cylinder was used at A/D = 0.25 giving a 
Reynolds number, Re = U∞D/ν, of 4400, while for the higher 
amplitudes the smaller cylinder was used and Re = 2300. The 
near wake velocity field was measured using a laser scanning 
version of high-image density PIV [10]. The images were 
recorded on high resolution 35 mm film and digitised at 106 
pix/mm resulting in velocity fields with approximately 3500 
vectors. The phase averaged vorticity fields reported here were 
calculated from 4-9 instantaneous velocity fields. The time 
varying lift force on the cylinder was measured by strain gauges 
mounted on a support sting. The inertia force due to the 
acceleration of the cylinder’s mass was subtracted from the lift 
force.  

Results and Discussion 
Both the wake states for the forced oscillations, and the response 
branches of the elastically mounted cylinder, are characterised in 
terms of the wake structure and the forces on the cylinder [2, 5]. 
The variation of CL and CL vortex with fe/fo has a distinctive shape 
for both the forced and freely oscillating cases. However, it is 
difficult to compare these shapes as for the free cylinder the 
amplitude of oscillation varies with fe/fo, while for the forced 
case A/D is held constant. The variable which best allows us to 
compare the lift forces on the forced and freely oscillating 
cylinder is the phase of the vortex lift force. The phase of the 
vortex lift force relates directly to changes in the distribution of 
vorticity and does not include the fluid inertia force, which varies 
directly with A/D. Additionally, the value of φlift vortex indicates 
the direction of energy transfer and has been used previously by 
Govardhan & Williamson [5] to characterise response branches.  
Low-frequency state ↔ lower response branch 
The structure of the near wake for the low-frequency state is 
shown in Figure 3a at the top and mid-point of the cylinder’s 
oscillation. The low-frequency wake is characterised by the 
production of long shear layers which extend across the back of 
the cylinder, resulting in a very wide wake. As discussed by 
Carberry et al [2], the long extended shear layers promote the 2P 
mode of shedding, where vorticity of both signs is found 
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ghout the vertical extent of the wake. At the top of the 
der’s oscillation a long negative shear layer extends well 
the lower half of the wake, separating the attached positive 
city from a positive vortex structure which was shed in the 
ious half cycle. As the cylinder moves downwards the 
ive shear layers swings around the back of the cylinder and 
e mid-point of the cylinder’s oscillation it has a distinct 

ards angle. At the mid-point of the oscillation, Figures 3a(ii) 
3b(ii), a small portion of the negative shear layer has already 
rated from the rest of the shear layer, forming a counter 
ing pair with previously shed positive vorticity and the 
hed negative vorticity is about to be shed into the near wake.  
the elastically mounted cylinder the wake for the initial 
ch, Figure 3b is very similar to the low-frequency wake in 
re 3a, where for both cases A/D = 0.6. Not only do they both 
ay the same 2P mode of shedding, but the distribution of 
city and phase of vortex shedding are remarkably similar. 
phase of the vortex lift force for the low-frequency wake, 
re 3a is 184o, while for the lower branch, Figure 3b φlift vortex 
st under 180o. Thus, the values of φlift vortex and the phase of 
x shedding for the low-frequency state and the lower branch 
ery similar, however, as the values of φlift vortex lie either side 
0o the energy transfer is in the opposite direction.  
difference in the values φlift for the two cases in Figure 3 is 
oximately 25o. The larger difference in φlift does not relate to 
tional changes in the wake but is symptomatic of the fact that 
hases fall into the 2nd and 3rd quadrants. Examination of 

re 1 shows that when φlift vortex is near 180o adding CL fi to the 
x force acts to push φlift away from 180o, and the difference 
e values of φlift does not necessarily represent the difference 
hase of vortex shedding. 
-frequency state ↔ initial response branch 
mode of vortex shedding for the high-frequency wake, 

re 4a, is 2S and the structure of the wake clearly differs from 
low-frequency wake. The attached shear layers are much 
ter resulting in a relatively narrow wake. The initial branch 
 also sheds in the 2S mode, as shown in Figure 4b, and the 
ral structure of the near wake is similar to the high-
ency wake. Comparison of the wakes for the forced and 

y oscillating cylinders at the top and mid-point of the 
lation indicates that shedding is occurring earlier in the high-
ency wake. Compared to the 2P mode of shedding the exact 
g of vortex shedding for the 2S mode is often not well 
ed. As shown in Figure 4a(ii), the shorter negative shear-
 and the fact that the positive vortex is shed from the lower 
r-layer as the wake tilts upwards, combine to make the 
ration of vorticity less distinct. It is important to remember 
φlift vortex, and therefore the direction of energy transfer, is 
d to the maximum rate of change in the horizontal vortex 
ent, equation (1), rather than the point in the cycle at which 
efine the “pinching off” of a new separated vortex structure.  
e is a significant difference in the values of φlift vortex for the 
-frequency and initial branch wakes shown in Figures 

 b). For the high-frequency state φlift vortex = -78o, whist for 
initial branch φlift vortex is just greater than 0o. The large 
rence in φlift vortex is consistent with a shift in the phase of 
x shedding, however it is difficult to quantify the difference 
ase from the vorticity fields of Figure 4. The energy transfer 
he initial branch is small and positive, while for the high-
ency state the energy transfer is negative and relatively 
, CE = -1.30. 
ex lift phase and energy transfer 
variation of φlift vortex with fe/fo for the forced and freely 
lating cylinders is shown in Figure 2. The freely oscillating 
der has a relatively high mass damping (m*ζ = 0.250), and 
 the lower and initial response branches are observed. The 



amplitude of oscillation varies from close to zero at the bounds 
of lock-in, to A/D ≈ 0.55 just before the transition from the initial 
to the lower branch. At the transition between response branches 
there is typically a jump in A/D and a corresponding jump in 
CL fi. The amplitude of the forced oscillation is constant, A/D = 
0.5 and therefore CL fi varies only with the frequency of 
oscillation. The vortex lift phase for the freely oscillating 
cylinder is constrained by the requirement of positive energy 
transfer and will always fall within the shaded positive energy 
region in Figure 2, 0o<φlift vortex<180o. The forced oscillation of 
the cylinder can result in either positive or negative energy 
transfer, and φlift vortex extends either side of the positive energy 
region. Despite the difference in the range of φlift vortex the shape 
of the plots for the forced and free oscillations in Figure 2 is 
remarkably similar. 
For an elastically mounted cylinder the range of φlift vortex varies 
with m*ζ, [5, 3]. At high values of m*ζ the values of φlift vortex 
associated with the lower branch are well below 180o while for 
the initial branch φlift vortex is well above 0o. As m*ζ decreases the 
values of φlift vortex for the lower and initial branch approach their 
limiting values of 180o and 0o respectively. The variation of 
φlift vortex with m*ζ and fe/fo is similar to the variation of the phase 
of a driven elastically mounted mass with m*ζ and fe/fstruc, [14], 
where for the simpler case of the driven mass the force 
generating the motion is independent of the systems response. 
For the forced oscillations at A/D = 0.5, shown in Figure 2, 
φlift vortex is approximately equal to 180o for the low-frequency 
state, while for the high-frequency state φlift vortex appears to 
asymptote towards -90o. Experiments over a range of A/D and 
Re showed a general collapse of the data towards these two 
values. This suggests that when the wake is not restricted by the 
requirement of positive energy transfer there is a preferred phase 
of vortex shedding for each wake state which does not 
necessarily fall within 0o<φlift vortex<180o. The high-frequency 
state is often associated with negative energy transfer, 
particularly at high values of fe/fo, while for the low-frequency 
state the direction of energy transfer depends on whether φlift vortex 
is just above, or just below 180o. For values of fe/fo above the 
transition to the high-frequency state the vortex lift force is 
typically in-phase with the cylinder’s oscillation and φlift vortex is 
close to zero. Therefore, as shown in Figure 2, close to transition 
there may be a narrow region of positive energy transfer. At A/D 
= 0.4 and 0.5 these narrow regions of positive CE appear to 
coincide with the values of fe/fo at which these amplitudes of 
oscillation are observed to occur for a freely oscillating cylinder, 
as for higher fe/fo the freely oscillating cylinder does not oscillate 
at these amplitudes. The motion of the elastically mounted 
cylinder at smaller amplitudes is observed over a wider range of 
fe/fo. However, for a forced amplitude of A/D = 0.25 we did not 
observe a wide band of positive energy transfer, and in fact CE 
was negative for the entire high-frequency state. 

Conclusions 
Despite the remarkable similarities in the wake structures and 
modes of vortex shedding for the forced wake states and free 
response branches, differences in the phase of the lift force mean 
that in many cases the forced wakes have negative energy 
transfer and hence do not predict free cylinder oscillations. The 
fundamental difference between the two systems is emphasised 
by the results for identical values of A/D in Figure 3, where 
despite very similar wakes and values of φlift vortex, the negative 
energy transfer for the forced oscillation incorrectly suggests that 
the elastically mounted cylinder will not oscillate at this 
amplitude. If the forced oscillation accurately represents the 
vortex induced motion of the elastically mounted cylinder then 
the wakes for the two cases should be the same. Although the 
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on of the elastically mounted cylinder, particularly at higher 
, differs only very slightly from a pure sinusoid, it appears 
the subtle differences in the displacement profile can result 
gnificant changes in the energy transfer. An understanding of 
 small changes in the motion of the cylinder can alter the 
e of vortex shedding and the energy transfer is required to 
mine the relationship between the forced and freely 
lating cylinders. Therefore, despite encouraging similarities 
e wake states of the forced and free oscillations, further 
 is required to determine how the forced case can be used to 

ict the vortex induced motion. 
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