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ABSTRACT

When the compressibility of the fluid within a simple
two dimensional vortex is important, an analysis of
the flow must account for the effects of heat conduc-
tion, viscous dissipation, compressibility, and radial
convection on the motion and structure of the vortex.
The purpose of this paper is to examine these effects
for a two dimensional Taylor vortex. Exact and nu-
merical similarity solutions for the compressible per-
turbations to an incompressible, two dimensional, ax-
isymmetric Taylor vortex are presented. The solu-
tions allow one to explicitly determine the decay rates
of the velocities and thermodynamic variables in the
flow. An examination of the solutions also reveals
that the temperature, density, entropy, and radial ve-
locity in the vortex are strongly dependent on Prandtl
number.

INTRODUCTION

A compressible flow is one in which a change in pres-
sure over a characteristic lengthscale of the flow re-
sults in a corresponding change in density. Similarly,
a compressible vortex contains large tangential ve-
locities which create strong pressure gradients; these
pressure gradients, in turn, produce substantial den-
sity variations across the vortex.

For example, in the two dimensional compressible
vortex experimentally studied by Mandella (1987)
the maximum tangential velocity in the vortex is
about 230 ms~!. This gives a vortex Mach num-
ber of M = 0.67, based on the far-field sound
speed. The radial profile of the density measure-
ments is nearly Lorentzian in shape, and monoton-
ically decreases from 1.79 kgm™2 in the far-field to
0.80 kgm™3 at the vortex centre — a 55% drop in
density. The corresponding pressure profile is also
approximately Lorentzian and decreases from a max-
imum of 152100 Nm~? in the far-field to about
44800 Nm~2 at the centre.

Compressible vortices are a significant feature of
many fluid flows of physical and technological inter-
est: turbulent combustion in engines, strong wing-tip
vortices, the generation of aeroacoustic noise by jet
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aircraft, shock diffraction around sharp corners, and
astrophysical flows such as solar coronae. Addition-
ally, compressible vortex models have become pop-
ular for testing non-reflecting boundary conditions
and as a basic component of numerical simulations
for studying sound generation by shock/turbulence
interaction. Yet, despite the frequent occurrence of
compressible vortex flows in nature, the current num-
ber of analytical descriptions of this type of flow is
quite small (Colonius, Lele, & Moin 1991; Mandella
1987). In light of this, we will examine analytical
self-similar solutions for a slightly-compressible Tay-
lor vortex (Taylor 1918) to gain insight on the funda-
mental physical behaviour and structure of compress-
ible vortices. The vortex is a two-dimensional, ax-
isymmetric, viscously-decaying, free vortex; the far-
field flow conditions and the coefficients of viscosity
and thermal conductivity are assumed to be constant.

Approach

The full Navier-Stokes equations will not yield sim-
ilarity solutions for a free compressible, viscous vor-
tex with constant far-field flow conditions. However,
similarity solutions can be found for the simplified
set of equations developed by Colonius et al. (1991).
This equation set describes the evolution of the com-
pressible perturbations to a incompressible, viscously-
decaying, reference flow. It is assumed that the
flow does not contain acoustic waves and that
the viscosity g and thermal conductivity k of the
fluid are constant. Self-similar solutions to the
weakly-compressible equations can be found by ap-
plying a three parameter Lie group transformation
(von Ellenrieder 1998). Here, the details of the solu-
tion method are omitted for brevity, and we focus on
discussing the solutions when the reference flow is a
two dimensional, incompressible, Taylor vortex.

SOLUTIONS
The tangential and radial velocities (v and u, respec-

" tively) and the thermodynamic variables (pressure p,

density p, and temperature T') are scaled as shown -
in equation (1). vy, is a reference velocity (the maxi-



mum tangential velocity in the vortex’s initial velocity
profile) and /; is the radial location of v,,. Far-field
flow quantities are denoted with a subscript co, r
is the radial coordinate, and % is time. The term p
is similar to the standard definition of the dynamic
pressure coefficient in aerodynamics and represents
the normalized deviation of the local pressure p from
the far-field pressure poo.
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The specific heat at constant pressure is denoted as
C)p and is assumed to be constant.

Each of the dependent flow variables is approxi-
mated as

f=fo+Mf+0(M*), 2)

where f may represent any dependent flow variable.
Terms of O(1) are collected to yield equations de-
scribing an incompressible reference flow, and O(M?2)
terms are collected to give expressions for the com-
pressible perturbations to the reference flow. The ref-
erence flow terms are designated with a subscript 0
and the O(M?) perturbations are denoted by the
subseript 1.

The solution for the Taylor vortex reference flow
(figure 1) is given by,

Ci(l = n)e™"
= (r+m)2 7 (3a)
- Cin'/2e"
Vg = —(T+Ti)3/2, (3b)
. Cle™n
Do = PTCwSEL (3¢)

where 7 = 72 /4(7 + ;). Let C; = exp(1/2)/2 and
7; = 1/2 so that the maximum tangential velocity
is g =1 at ¥ =1 when 7 = 0. The reference flow
temperature and density are taken to be constant,
and are normalized to Tp = po =1

As the vortex decays, the total angular momentum
of the reference flow is constant. The tangential ve-
locity increases linearly near the vortex centre, and
then decreases as ~ exp(—72) in the far-field. The
vorticity in the centre of the vortex is positive, and
changes sign near the core radius, 7 = 1 — there is
zero total circulation in the reference flow. The pres-
sure is lowest in the centre of the vortex, and increases
monotonically with 7.
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Figure 1: Taylor vortex reference flow (a) vortic-
ity, (b) tangential velocity, and (c) pressure. Four
different times are shown: —, 7 = 0; ————
T=1/4;——,7=1/2,and ------ ;=1
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The self-similar forms of the solutions for the com-
pressible perturbations when Pr =1 are
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We use the data of Mandella (1987) to pick phys-
ically realistic values of the integration constants:
Gy = —C?#(2 —7)/4, so the radial velocity is zero
at # = 0; By = —1.67 x 102 giving a 55% drop in
density from the far-field to the vortex centre when
M = 0.67 and the ratio of specific heats v = 1.4.

The physical form of the flow variables is recovered
with the relations:

oln) = Tilr+m)°, )

B(n) pu(r + 1),

Il

; (5a-€)

C(n) EI(T +Ti)3:

afm) = aj(r+m)"7?
where 4] = iy Re. Equations (5a—-€) allow one de-
termine the decay rates of each of the flow quantities
by simple inspection
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Prandtl number dependence
We will use values of Pr = 0.5, 0.72, and 1.0 to get
a feel for the behavior of the O(M?) solutions when
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Pr is varied over an extreme range.!. The solutions
for Pr # 1 are obtained using series solutions and
numerical integration (von Ellenrieder 1998).

Consider how the O(M?) solutions vary with the
Prandtl number (figure 2). Pr represents the ratio of
viscous to thermal diffusion. When Pr = 1, heat and
viscosity diffuse at the same rate; when Pr < 1, heat
diffuses faster. Therefore, when the temperature pro-
files for different values of Pr are plotted on the same
graph, and each profile is set to the same temperature
at 7 = 0 and 7 = 0, the temperature distribution for
the curve with the smaller value of Pr will extend
further from the origin (figure 2a).

The variation of the radial velocity perturbation
with Pr is shown in figure 3. As ¥ — 00 the com-
pressible perturbation terms vanish and the far-field
flow is essentially incompressible. Because of this, one
would expect the asymptotic behavior of the radial
velocity around the vortex to have the same form as
the radial velocity around a point mass sink in a two
dimensional, incompressible flow. As figure 3 shows,
the far-field radial velocity has this property: it varies
with 7 as @ ~ 1/7.

The far-field behavior of the radial velocity is the
same for all values of Pr. This is because slightly-
compressible vortices are always compressed (Colo-
nius et al. 1991; von Ellenrieder 1998). In figure 3
we see that for the Taylor vortex 1] is negative for
all values of 7. The magnitude of @7 is zero at 7 = 0,
increases almost linearly to a maximum, and in the
far-field decreases like 1/7. A comparison of figure 2b
and figure 3 reveals that the magnitude of the radial
velocity is larger in those regions of the flow that are
less compressed.

CONCLUDING REMARKS

The above analysis describes some of the basic phys-
ical properties of a self-similar, slightly-compressible
Taylor vortex and is a start to understanding com-
pressible vortices in general. Also, the use of the
Pr = 1 closed form Taylor vortex solutions can be
a quick and simple means of validating and initial-
izing numerical simulations of flows containing free,
two-dimensional, compressible vortices.

Here, we have assumed the viscous diffusivity and
thermal conductivity of the fluid are constant. In re-
ality both of these quantities are temperature depen-
dent. An interesting extension of the present work
would be to include the temperature dependence of
it and K by using power law models.

A full characterization of the flow during the for-
mation and subsequent evolution of the compress-

1The Pr for most monatomic and diatomic gases at at-
mospheric pressure lies within the range 0.67 < Pr < 0.85

« for temperatures between 100K < T' < 1300K. For a given

gas, the Pr is roughly constant, even at large tempera-
tures. The theoretical value of Pr for a monatomic gas is
Pr=2/3
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Figure 2: Pr dependence of the series solution
when 7 = 0. Radial distributions of O(M?)
(a) temperature, (b) density, and (c) entropy, and
are shown for three different values of Pr:

—, Pr = 1.00; -=———, Pr = 0.72; and —-—,
Pr = 0.50.
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Figure 3: Pr dependence of the solution for a
Taylor reference flow when 7 = 0. Radial distri-
bution of the O(M?) radial velocity is shown for
three different values of Pr:

— Pr=100; ————, Pr = 0.72; and —-—,
Pr =0.50.

ible vortex studied by Mandella (1987) has still not
been done. Since compressible vortices are present
in many flows of engineering and physical interest,
a thorough knowledge of the formation process and
structure of a single compressible free vortex is of
fundamental importance. Therefore, further compu-
tational and experimental effort should be directed
towards more fully understanding the flow studied by
Mandella (1987).
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