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ABSTRACT

A snapshot-POD is derived from a Large Eddy Simu-
lation (LES) of a plane turbulent Mixing Layer (ML).
The obtained eigenfunctions are found in good agree-
ment with experiments. Finally a Low-Order Dynam-
ical System (LODS) is derived. The random coeffi-
cients obtained from the LODS and the ones directly
calculated from the LES are compared.

INTRODUCTION

The active control of fully developed turbulent flows is
of particular interest for many industrial applications.
In shear flows, large-scale Coherent Structures (C9)
exist which contain most of the turbulent kinetic en-
ergy. These CS are mainly responsible for vibrations,
noise generation, etc. Therefore, in term of control, it
seems important to describe correctly the character-
istics of these CS and to predict their time evolution
using models as simple as possible. One method pro-
posed to mimic the dynamical behavior of the Aow is
to develop a LODS. In the Proper Orthogonal Decom-
position (POD) (Lumley 1967), the CS are defined in
terms of optimal signature of the turbulent kinetic en-
ergy. The CS are then related to the eigenfunctions of
the POD. From these eigenfunctions, a LODS can be
derived through a Galerkin procedure. This method
was, for example, successfully used to study the near-
wall evolution of the flow within a turbulent boundary
layer (Aubry et al. 1988).

The aim of the present study is to apply such proce-
dures on the data from the LES of a 3D MIL, spatially
developing downstream of a flat plate. The LES has
been performed on a well documented flow configura-
tion studied experimentally in details in earlier works
(Delville 1994, 1998, Cordier et al. 1997, Bonnet et
al. 1998). Several gains can be derived from such a
LES. Mainly the whole flow field is known in a deter-
ministic way, thus the efficiency of the POD can be
analyzed and the time evolution of the POD modes
studied in details. The data-base generated by the
LES can be used to check assumptions that are re-
quired when experimental procedures are applied.

THE SNAPSHOT-POD METHOD

In order to analyze the organization present in the
flow, the Snapshot-POD method (Sirovich 1987) is
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applied on the results given from the LES. This POD,
based on spatial averaged quantities, has been pre-
ferred to the “standard” approach (Lumley 1967).
Every spatio-temporal event vi(z,t) is decomposed
using a mean and a fluctuating part:

vi(z,t) =% (z) +vj(z,1) ,

(1)

where the mean part corresponds to a time average:

mg=%ﬁwmﬂa.

Fluctuating parts are written using a discrete basis:

o
vi(z,t) = Y A elM2), ()
n=1

where N* is the number of modes solved in the
snapshot-POD. A("‘)(t) correspond to the eigenfunc-
tions of a Fredholm integral problem:

/C(t,t’) AM(E) dt' = A Ay | (3)
T

where C(t,’) is the temporal velocity-correlations:
il
ct) = % [ weodara @

and where A(") are the real, positive eigenvalues of
this tensor. Each eigenvalue is associated to the en-
ergy density contained in the corresponding mode and
the sum of A(?) s equal to the turbulent kinetic en-
ergy included in the integral domain (D). The spatial
eigenfunctions are deduced from:

¥ = ziey [ w4 a. )

LARGE EDDY SIMULATION

Details on the LES code can be found in several
places, mainly in Lardat et al. (1997) or in Ta Phuoc
(1994), and are not discussed here.

The LES of the spatial development of the ML starts
at the trailing edge of the splitting flat plate. In the
simulated flow, the velocity ratio is r=Us/U;=0.59,
where U; and Us are the magnitudes of the exter-
nal velocities of the boundary layers at the trailing




edge of the flat plate. The Reynolds number, based
on &, and on AU=U; — Usa, is 35000 (4, refers
to the vorticity thickness at the exit of the computa-
tional domain). The computational domain spreads
over 20 §,,, in the streamwise direction, 6 d,, in the
inhomogeneous (vertical) direction (y) and lays over
5 8., in the spanwise direction(z), for which the flow
is supposed to be periodic.

The grid uses 401x71x55 nodes in the £ X y X z
directions and is tightened around the centerline
of the ML in the direction (y). The grid filter
width (A=(Az x Ay x Az)l’rs') is close to the Tay-
lor micro-scale measured by Delville (1995).

As regards the boundary conditions at the inflow sur-
face (ie. the trailing edge of the splitting plate), the
longitudinal component of the mean velocity is ini-
tialized using two turbulent Whitfield profiles for the
boundary layers from each side of the flat plate. The
profiles of the spanwise components of the mean vor-
ticity (£2;) are then deduced from the velocity pro-
files. A white noise is superimposed on {2,. The per-
turbation magnitude is equivalent to an amplitude of
10~3 U; on the streamwise velocity component. At
the outlet boundary (z=204,,), the tangential com-
ponents of the vorticity (2, and ;) are calculated
by extrapolation along the characteristics. The longi-
tudinal velocity component is then deduced from the
vorticity profiles, prescribing that the mass conserva-
tion is satisfied. At the upper and lower surfaces of
the domain (y==£3d., ), slip conditions are imposed.

VALIDATIONS OF THE SIMULATION

To compare the numerical results with the experimen-
tal data, 4000 time steps and a portion of the com-
putational domain (X /8., € [5, 15]) are retained.
Simulated mean velocity and Reynolds stress pro-
files have been compared with the experimental data
(Lardat et al., 1997). The self-similarity behavior of
the ML is recovered by the LES ; the spatial growth
rate of the mixing layer is correctly predicted (LES:
dé, /de=0.042 ; Exp.. dd,/dz=0.041~0.16{7L).
Note that this spreading rate is in very good agree-
ment with the Abramovich (1963) rule. Very good
agreements are also achieved on the Reynolds stress
component.

The agreement between the computations and exper-
iments can also be seen on Fig. 1, where the two-
point space correlations Ri;(2o, Yo, 2’,y’) are com-
pared to the space-time correlations measured by
Delville (1995). On these figures, the reference point
(o, Yo) is located at the center of the selected spa-
tial domain. This comparison cross-validates com-
putations as well as experiments. Note that the u
component can be described by fluctuations of oppo-
site sign from part to part of the ML, while the v
component can be described by fluctuations in phase
all over the y direction, alternated in sign in the z
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Figure 1: Comparison of the measured space
time correlations R;i(7;y,y’) (bottom) with the
space correlations obtained from the LES (top)
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Figure 2: Energy contained in the first 1000
modes of the snapshot POD.

direction. Moreover, the shape of the w component
indicates the presence of a strong organization for the
streamwise vorticity component, this organization be-
ing recovered from both experiments and LES.

APPLICATION OF THE SNAPSHOT-POD

The convergence of the snapshot-POD, applied on the
simulated velocity field, is plotted on Fig. 2. It is
found to be very rapid since 99 % of the turbulent
kinetic energy is contained within the N =64 first
modes (generally defined as the Karhunen-Loeve di-
mension). The relative number of modes required to
contain 99% of energy is (N /N*=0.016)

These eigenvalues occur in pair of almost equal val-
ues, whereas there is a gap in magnitude between
these pairs. The eigenvalue problem (3) is near de-
generated. To understand the consequence of this
result we present in Fig. 3 positive iso-surfaces of
@E")(x,y, z) for the first two modes. Several gen-
eral features can be noticed when considering these
eigenfunctions. Whatever the velocity components
are, one can notice a streamwise shift when compar-
ing modes 1 and 2. It can be seen that, essentially,
the eigenfunctions of this pair are representing the



Figure 3: Iso-surface of the spatial eigenfunc-
tions for modes 1 and 2 .

same structure, one of them just being shifted with
respect to the other in the streamwise direction. An
analogous behavior is observed for the first higher
modes. Moreover, these eigenfunctions exhibit a pre-
ferred organization in the spanwise direction. Partic-
ularly, o™ (z) is clearly aligned in the spanwise di-
rection and (D,(,un)(g,) exhibits lambda-shape like struc-
tures (Fig. 3). These behaviors are similar to those
observed experimentally by Delville (1994).

LOW-ORDER DYNAMICAL SYSTEM

The goal sought after, is to study the temporal behav-
ior of the large scale coherent structures. Therefore,
the temporal approach followed previously by Aubry
et al. (1988) and Glauser et al. (1989) has been
employed.

Low-dimensional model: POD-Galerkin procedure
As the pressure field is provided by the numerical sim-
ulations, a low-order dynamical system is developed
by considering the Navier-Stokes equations written in
pressure-velocity formulation:

V.V =0 (6)
ov 1
W+VVV —VP+EAX.

The velocity (V) and the pressure (P) are decom-
posed using the Reynolds decomposition (1). The
velocity fluctuating part is then written using a dis-
crete basis of the flow following equation (2). This
decomposition is introduced in the transport equa-
tions (6) which are then projected onto the spatial
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eigenfunctions ‘I)(”’)(g) by means of a Galerkin pro-
Jjection. Since the eigenfunctions are orthogonal, a
set of Ng time dependent ODEs is obtained for the
so-called random coefficients A(“)(t) of the POD:

jt }_Zb mAM 4 pln)
No N (7)
£ comk [AM™ A®) — AT AT |
m=1 k=1

where Ng is the number of Galerkin modes retained
in the dynamical system. The coefficients of the sys-
tem (7) bnm, Cnmk are expressed as follows:

b = (g( —Atp(m)

" Re
—VV.9™ _ voim Y)

B 1 (@(n), vg(m).g(k))

(2™, vP) = - /w P' (2™, n) ds

where n is the external normal.

These ODEs system is solved using a 4th order
Runge-Kutta integration. At the initial state, the
random coefficients (A (¢ = 0)) are initialized us-
ing the projection of the events v;(z,t) at ¢ = 0 on
the spatial eigenfunctions. We prescribe A(m) A(k) —
A(™) §_+. The bpm coefficients are estimated using
the mean velocity given from the LES. The pressure
term contribution is neglected in a fashion compara-
ble to Rajaee et al. (1994).

pn) — _

Temporal evolution of A(")(t)

The dynamical system was developed on the same
record than the previous results. Two sets of Galerkin
modes (Ng=10 and Ng = 36) are retained to derive
two independent dynamical systems. For these num-
bers of mode, the relative energy contained in the
system is respectively 42% and 90%. The compar-
isons between the random coefficients A(™)(t), ob-
tained from the resolution of (7), and the projec-
tion of the events v;(z,t) onto the spatial eigenfunc-
tions @ "}( ) are plotted for the first two modes
on Fig. 4. When considering the early evolution of
AM() (t < 250) both dynamical systems are able
to follow the temporal evolution of this mode. The
same result has been globally observed for higher
modes. However, if for a short time integration, a
rather good agreement is achieved, it appears that for

 longer time, the random coefficients A(™) () obtained

from the dynamical systems diverge from the direct
POD projection. For a small truncation (Ng=10), a
progressive time shift can be observed. When higher
POD modes are included, this time shift can be re-
duced and the typical period of the modes becomes
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Figure 4: Comparison of the temporal evolution

of the first two modes for the snapshot POD —
and the LODS for Ng=10 — — and Ng=36 - - -.

better estimated. Nevertheless, this improvement is
associated with a divergence in the amplitude of the
first mode. This behavior can be explained by some
of the following points. As regards the dynamical
system formulation, neglecting the pressure contribu-
tion, surely induces some inaccuracy in the model.
In the same way, the instantaneous contribution of
the averaged field to the dynamical system has been
simplified by considering only its temporal average
contribution (A(m) A(k) = A(M)§ ). One last rea-
son for the long term discrepancy can be related to
the truncation done in the Galerkin projection. By
taking into account additional modes (from Ng=10
to 36), still “energetic” modes have been added, and
the system becomes relatively less dissipative. For
the dynamical system (Ng=36), tests performed with
additional viscosity have shown that the time-shift
remains reduced, while the magnitudes of the A co-
efficients can be lowered.

CONCLUSIONS

A 3D LES of the plane mixing layer have been con-
ducted, from which the history of the 3 velocity com-
ponents has been calculated on a large temporal sam-
ple. From the data base generated by this simulation,
a 3 dimensional snapshot-POD has been performed.
The spatial organization of the eigenfunctions ‘I'En)
can be favorably compared to the experimental ones.
Finally, the ability of the POD to obtain a low-order
dynamical system has been underlined. Two differ-
ent dynamical systems have been performed using re-
spectively 10 POD modes and 36 POD modes. For
short time evolution, the random coefficients calcu-
lated from the dynamical systems well agree with the
spatial eigenfunctions estimated from the LES results.
However, for Ng=36, the dynamical system are not
enough dissipative. Artificial dissipation is then nec-
essary to follow correctly the long term temporal evo-
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lution of the plane mixing layer.

These first results are very encouraging. In the near
future, the influence of adding higher-order POD
modes on the flow structure representation will be
studied and the role of the pressure term clarified.
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