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ABSTRACT

Superfluid mixtures have Prandtl numbers tunable
between those of liquid metals and water: 0.04 <
Pr < 2. Moreover, superfluid mixtures convect as
regular fluids, i.e. classical Rayleigh-Bénard convec-
tion. With this unique Prrange and a variable aspect
ratio (I') experiment we survey convective instabili-
ties in the largely unexplored space 0.12 < Pr< 1.4
and 2 < I" < 95. Among the novel behaviour found
in the survey are: Instability competition greatly in-
creases the complexity of convective states, but a
heat-pulse method allows state selection. And, as T
becomes large (> 44), the onset of convection changes
from stationary to time-dependent. As I' increases,
oscillations arbitrarily close to the onset of convec-
tion arise, then give way to large-amplitude irregular
fluctuations.

INTRODUCTION

The dynamics of Rayleigh-Bénard convection
(RBC) rolls—convection in a horizontal layer of fluid
subject to a destabilizing density gradient—have been
one of the most valuable experimental arenas for gen-
crating and testing ideas on linear and nonlinear sta-
bility, dynamical systems, chaos, and the transition
to turbulence. Superfluid mixture convection (SMC)
is an analogous but much less studied form of convec-
tion that occurs when the density gradient is created
in a layer of a dilute mixture of *He in superfluid *He.
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Figure 1: Prandtl number range of fluids commenly used
in experiments. Note the large Pr gap between water and
liquid metals bridged by superfluid mixtures.

The prime motivation for using such a novel fluid is
the remarkable Prandt]l number range available with
superfluid mixtures—0.04 < Pr < 2. Over this
range the instabilities and dynamics of RBC rolls are
expected to change dramatically [3] but no conven-
tional fluid spans this range (fig 1). By expanding
the experimental parameter space to areas that pre-
viously could only be studied theoretically, this gives
SMC the potential to be extremely valuable for re-
search on convective dynamics and stability!.

Important parameters governing these instabilities

1t is not obvious that SMC experiments should be re-
lated to RBC calculations, which explicitly assume a clas-
sical fluid. See Metcalfe & Behringer [6] for the exhaus-
tive experimental and theoretical justifications and for the
caveats.
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are the Prandtl number Pr, which is a ratio of ther-
mal to vortical relaxation times, and the aspect ra-
tio ', which governs the geometric arrangement and
number of rolls. Other relevant parameters are the
Rayleigh number Ra, the driving force of the flow,
and the roll wavevector g. Ra-Pr-I" form the experi-
mental control-parameter space. The Nusselt number
N measures the thermal response; N — 1 is the scaled
amount of heat carried by convective motion alone?.

This paper describes two results from an initial ex-
perimental survey of convective dynamics over un-
explored regions of I'-Pr space. The first explores
the competitive dynamics around the codimension-2
point where the oscillatory and skew-varicose insta-
bilities intersect. The second observes the onset of
convection changing from stationary to chaotic as [’
increases to very large values.

INSTABILITY COMPETITION

Calculations of the instability boundaries in Ha-
Pr-q space of straight parallel convection rolls have
been carried out by Busse & Clever [3]. Two in-
stabilities are relevant for Pr < 1: the station-
ary, wavelength changing skewed-varicose instability
(SVI), which keeps the pattern within the stable band
of wavenumbers; and, the time-dependent oscillatory
instability (OI), which causes transverse roll oscilla-
tions. In the region where the two instability bound-
aries cross, called a codimension-2 point [5], the insta-
bility competition creates a rich complex of multiple
stable states. Experimental difficulties had previously
prevented codimension-2 points from being fully char-
acterized [7].

We find the crossing point between the OI and the
SVI in the range 0.19 < Pr < 0.29. In what fol-
lows, the initial wavevector is kept close to its value
at onset g, = 3.1. For Pr = 0.19 the first secondary
instability (FSI) is a forward Hopf bifurcation with
a frequency in good agreement with theory [3]; for
Pr = 0.29 the FSI is the SVI. The agreement be-
tween theory and experiment for Pr = (.19 and 0.29
is good, as is to be expected away from the crossing
point.

However, in the neighborhood of the crossing the
codimension-2 point causes a remarkably complex ar-
ray of states arises, as seen in the Nusselt data in fig-
ure 2 for Pr = 0.23. At a given Ra, as many as four
different states are accessible. The arrows in figure 2
show the path selected when the heat flux is adiabati-
cally changed. At the FSI the transition is from state
A to state D; states B and C are discussed below.
Branches A-D and H show only stationary convec-
tion. At higher r = Ra/Ra, we still find multiple
stable states; stationary and time-dependent states
may be locally stable at the same Ra. On branch
E, for example, a forward Hopf bifurcation occurs
at 7 =~ 2.85, but the transition from the stationary

2Metcalfe & Behringer [6] give precise definitions.
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Figure 2: Nusselt curve in the neighborhood of the co-
dimension-2 point, strongly showing the effects of com-
petition between the skewed-varicose and oscillatory in-
stabilities. Branches A-D: steady convection. Branch E:
steady for r = Ra/Ra. < 2.85, oscillatory otherwise,
Branches F, G: time-dependent convection only. Arrows
indicate transitions for adiabatically-changed heat cur-
rent.

branch D is into the middle of the oscillatory region,
and shortly after period doubling branch E becomes
unstable to branch B. Branch F begins similarly to
the true OI, and oscillatory branch F coexists with
chaotic branch G. Branch G shows chaos at larger 7;
at lower 1 it shows quasiperiodic transitions to chaos,
and has other unusual features, such as a hysteresis
loop. With decreasing Ra, branch G makes a tran-
sition onto steady branch B. Branch H was brought
about by a sudden drop in Ra which took the system
from F to A.

Despite this complexity, the instability realized can
be selected with heat pulses. For instance when Ra
is raised by steps along branch A, branch D is se-
lected. On the other hand, if the heat step becomes a
heat pulse, short pulses leave the system on A; longer
pulses are the same as a heat step; and pulses of in-
between duration find branch B or C for narrow, non-
overlapping windows of pulse length. Figure 3 shows
the Nusselt number obtained after a heat pulse versus
the pulse length normalized by T, the vertical ther-
mal diffusion time. Before each pulse, we arrange the
system to be on branch A just below its termination
point. The amplitude of the pulse is such that if left
on, we always obtain A—D.

The bifurcations near the codimension-2 point un-
fold with surprising richness. The strikingly complex
behavior near the codimension-2 point is due to the
competition between the skewed-varicose and oscilla-
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Figure 3: Thermal pulse induced transitions at I' = 8.0,
Pr = 0.23. Plotted here is the resulting Nusselt number
after the pulse vs. the normalized pulse length. Three
steady states (B, C, D) are accessible from state A of
figure 2. The amplitude of the pulse is such that leaving
it on causes A—D. The vertical dotted line marks the
horizontal thermal diffusion time.

tory instabilities, and we emphasize that the Nusselt
curve of Figure 2 is ezactly reproducible to experi-
mental accuracy—and, in fact, most of the branches
show overlaying data from several different runs. This
rich behavior vanishes away from the codimension-2
point and diminishes with decreasing aspect ratio.

TRANSITION TO LARGE ASPECT RATIO CON-
VECTION

What happens at the onset of convection as the as-
pect ratio is made larger and larger? Of primary in-
terest is whether time-dependence arises at the onset
of convection. Time-dependence at onset is specif-
ically excluded in infinite-I" calculations [2], and ex-
periments [4] with up to 36 rolls confirm this. But
time-dependence has been observed in large fixed-
I" experiments [1]. What are the characteristics of
this time-dependence and how does it arise with sys-
tematic increase in ['7 We use the variable I' as-
pects of our experiment to investigate the changeover
from order to disorder at the onset of convection for
44 < T < 90; Pris held constant at 1.30. Classically
I" directly indicates the number of rolls; however, su-
perfluid effects reduce the critical wavevector. Longer
wavelengths mean fewer rolls.

Our probe for disorder comes from the time-records
and power spectra of AT the temperature difference
across the layer. We find three regimes at the onset
of convection as I increases (fig 4): (1) At smaller I,
the fluctuations below and above onset are only from
instrumental noise. (2) At moderate " there is a hys-
teretic transition to coherent oscillations. Fluctuation
amplitude is constant or increases slightly above onset
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Figure 4: Example time records for I' = 70. There are
50 rolls. (a) Below onset at 7 = (.949. (b) Fluctuations
at 7 = 1.308. The signal amplitude in (b) is larger than
in (a). (c) Oscillations at 7 = 1.365. At this aspect ratio
and temperature, AT, = 7.152 mK and 7, = 8.35 sec.

(3) At larger T, the fluctuation amplitude increases
continuously above onset and is correlated with the
Nusselt number. Oscillations cease.

Item 1 affirms our usual picture that onset is
steady. Item 3 is similar to the data of Ahlers &
Behringer [1] for a I' = 57 cylinder. Item 2 is a new
result. There is a regime of aspect ratios between
60 and 85 where coherent oscillations occur near the
onset of convection: there is a crossover between or-
dered, stationary behavior at onset for low I" and tem-
poral disorder for Ra arbitrarily close to (but above)
the onset of convection for large I'.

To quantify the growth of the average fluctuation
amplitude about AT, we calculate the integral of the
power spectrum or the total power P. Without oscil-
lations the spectra from which P is calculated all have
the same shape. The spectral shape is flat for several
decades with a “knee” frequency near one third of the
vertical diffusion time. Above the knee, the spectrum
goes as f~4.

Figure 5 shows plots of N and P as functions of
r. P is normalized by its average value below onset
P,. The crosses denote N and go with the left axis;
the squares denote P/P; and go with the right axis.
Filled (open) squares show points with fluctuations
(oscillations).

At ' = 44, we have the behavior expected from
steady convection. N = 1 in the absence of convec-
tive motion and rises sharply above 1 when convec-
tion begins. Thermal fluctuations are the same size
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Figure 5: Nusselt number (crosses, left scale) and noise
power (squares, right scale) as a function of 7 for ' = 44,
70 and 90 (top, middle, bottom). Open squares denote
the presence of a spectral peak. Arrows indicate data
taken when raising or lowering 7.

above and below the onset of convection and are due
to instrumental noise.

Unexpected behavior begins as I' increases to 60
and the number of rolls increases to 45. A hysteretic
transition to oscillations occurs at 7 &= 1.7. The fluc-
tuation power, though, does not appear to increase
above its background level.

With the addition of 5 more rolls (I' = 90), the
correlation of fluctuation power with Nusselt number
becomes apparent. For 58 rolls, P is linearly corre-
lated with V. Also at I' = 90 there are no oscilla-
tions, as there were at every other aspect ratio above
44,

As the number of rolls at the onset of convection
is increased from 36 to 58, there is a changeover from
ordered, statiomary convection to disordered, time-
dependent, convection. Between the fully ordered and

fully disordered states there is a crossover region that
takes the addition of about 20 rolls to cross. At the
beginning of the crossover region there are hysteretic
transitions to coherent oscillations near the onset of
convection. By the end of the crossover region the
amplitude of disordered thermal fluctuations grows
proportionally to the Nusselt number, while the on-
set of oscillations is pushed out to larger 7 and is no
longer hysteretic. For a large enough number of rolls,
the noise power is amplified as soon as a convective
velocity field exists, and the fluctuation amplitude
is directly proportional to the convective amplitude.
About 50 rolls seems to set the length scale at which
the interior of the fluid can no longer feel the ordering
effects of the sidewalls. We are left with the question
of what sets this number?

FUTURE DIRECTIONS

This initial survey has highlighted the richness and
variety of the convective instabilities at low to mod-
erate Pr. The survey is necessarily incomplete: large
regions of Pr-I" space remained unexplored. Much
exploration and characterization remains. Finally,
the present experiments have not yielded the convec-
tion patterns; information in this regard would be
extremely valuable.
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